Metamath Proof Explorer


Theorem psrvscafval

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses psrvsca.s S = I mPwSer R
psrvsca.n ˙ = S
psrvsca.k K = Base R
psrvsca.b B = Base S
psrvsca.m · ˙ = R
psrvsca.d D = h 0 I | h -1 Fin
Assertion psrvscafval ˙ = x K , f B D × x · ˙ f f

Proof

Step Hyp Ref Expression
1 psrvsca.s S = I mPwSer R
2 psrvsca.n ˙ = S
3 psrvsca.k K = Base R
4 psrvsca.b B = Base S
5 psrvsca.m · ˙ = R
6 psrvsca.d D = h 0 I | h -1 Fin
7 eqid + R = + R
8 eqid TopOpen R = TopOpen R
9 simpl I V R V I V
10 1 3 6 4 9 psrbas I V R V B = K D
11 eqid + S = + S
12 1 4 7 11 psrplusg + S = f + R B × B
13 eqid S = S
14 1 4 5 13 6 psrmulr S = f B , g B k D R x y D | y f k f x · ˙ g k f x
15 eqid x K , f B D × x · ˙ f f = x K , f B D × x · ˙ f f
16 eqidd I V R V 𝑡 D × TopOpen R = 𝑡 D × TopOpen R
17 simpr I V R V R V
18 1 3 7 5 8 6 10 12 14 15 16 9 17 psrval I V R V S = Base ndx B + ndx + S ndx S Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R
19 18 fveq2d I V R V S = Base ndx B + ndx + S ndx S Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R
20 3 fvexi K V
21 4 fvexi B V
22 20 21 mpoex x K , f B D × x · ˙ f f V
23 psrvalstr Base ndx B + ndx + S ndx S Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R Struct 1 9
24 vscaid 𝑠 = Slot ndx
25 snsstp2 ndx x K , f B D × x · ˙ f f Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R
26 ssun2 Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R Base ndx B + ndx + S ndx S Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R
27 25 26 sstri ndx x K , f B D × x · ˙ f f Base ndx B + ndx + S ndx S Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R
28 23 24 27 strfv x K , f B D × x · ˙ f f V x K , f B D × x · ˙ f f = Base ndx B + ndx + S ndx S Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R
29 22 28 ax-mp x K , f B D × x · ˙ f f = Base ndx B + ndx + S ndx S Scalar ndx R ndx x K , f B D × x · ˙ f f TopSet ndx 𝑡 D × TopOpen R
30 19 2 29 3eqtr4g I V R V ˙ = x K , f B D × x · ˙ f f
31 eqid =
32 fn0 Fn =
33 31 32 mpbir Fn
34 reldmpsr Rel dom mPwSer
35 34 ovprc ¬ I V R V I mPwSer R =
36 1 35 syl5eq ¬ I V R V S =
37 36 fveq2d ¬ I V R V S =
38 df-vsca 𝑠 = Slot 6
39 38 str0 =
40 37 2 39 3eqtr4g ¬ I V R V ˙ =
41 34 1 4 elbasov f B I V R V
42 41 con3i ¬ I V R V ¬ f B
43 42 eq0rdv ¬ I V R V B =
44 43 xpeq2d ¬ I V R V K × B = K ×
45 xp0 K × =
46 44 45 syl6eq ¬ I V R V K × B =
47 40 46 fneq12d ¬ I V R V ˙ Fn K × B Fn
48 33 47 mpbiri ¬ I V R V ˙ Fn K × B
49 fnov ˙ Fn K × B ˙ = x K , f B x ˙ f
50 48 49 sylib ¬ I V R V ˙ = x K , f B x ˙ f
51 42 pm2.21d ¬ I V R V f B D × x · ˙ f f = x ˙ f
52 51 a1d ¬ I V R V x K f B D × x · ˙ f f = x ˙ f
53 52 3imp ¬ I V R V x K f B D × x · ˙ f f = x ˙ f
54 53 mpoeq3dva ¬ I V R V x K , f B D × x · ˙ f f = x K , f B x ˙ f
55 50 54 eqtr4d ¬ I V R V ˙ = x K , f B D × x · ˙ f f
56 30 55 pm2.61i ˙ = x K , f B D × x · ˙ f f