Metamath Proof Explorer


Theorem psrvscaval

Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrvsca.s S = I mPwSer R
psrvsca.n ˙ = S
psrvsca.k K = Base R
psrvsca.b B = Base S
psrvsca.m · ˙ = R
psrvsca.d D = h 0 I | h -1 Fin
psrvsca.x φ X K
psrvsca.y φ F B
psrvscaval.y φ Y D
Assertion psrvscaval φ X ˙ F Y = X · ˙ F Y

Proof

Step Hyp Ref Expression
1 psrvsca.s S = I mPwSer R
2 psrvsca.n ˙ = S
3 psrvsca.k K = Base R
4 psrvsca.b B = Base S
5 psrvsca.m · ˙ = R
6 psrvsca.d D = h 0 I | h -1 Fin
7 psrvsca.x φ X K
8 psrvsca.y φ F B
9 psrvscaval.y φ Y D
10 1 2 3 4 5 6 7 8 psrvsca φ X ˙ F = D × X · ˙ f F
11 10 fveq1d φ X ˙ F Y = D × X · ˙ f F Y
12 ovex 0 I V
13 6 12 rabex2 D V
14 13 a1i φ D V
15 1 3 6 4 8 psrelbas φ F : D K
16 15 ffnd φ F Fn D
17 eqidd φ Y D F Y = F Y
18 14 7 16 17 ofc1 φ Y D D × X · ˙ f F Y = X · ˙ F Y
19 9 18 mpdan φ D × X · ˙ f F Y = X · ˙ F Y
20 11 19 eqtrd φ X ˙ F Y = X · ˙ F Y