Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
pssdifcom1
Next ⟩
pssdifcom2
Metamath Proof Explorer
Ascii
Unicode
Theorem
pssdifcom1
Description:
Two ways to express overlapping subsets.
(Contributed by
Stefan O'Rear
, 31-Oct-2014)
Ref
Expression
Assertion
pssdifcom1
⊢
A
⊆
C
∧
B
⊆
C
→
C
∖
A
⊂
B
↔
C
∖
B
⊂
A
Proof
Step
Hyp
Ref
Expression
1
difcom
⊢
C
∖
A
⊆
B
↔
C
∖
B
⊆
A
2
1
a1i
⊢
A
⊆
C
∧
B
⊆
C
→
C
∖
A
⊆
B
↔
C
∖
B
⊆
A
3
ssconb
⊢
B
⊆
C
∧
A
⊆
C
→
B
⊆
C
∖
A
↔
A
⊆
C
∖
B
4
3
ancoms
⊢
A
⊆
C
∧
B
⊆
C
→
B
⊆
C
∖
A
↔
A
⊆
C
∖
B
5
4
notbid
⊢
A
⊆
C
∧
B
⊆
C
→
¬
B
⊆
C
∖
A
↔
¬
A
⊆
C
∖
B
6
2
5
anbi12d
⊢
A
⊆
C
∧
B
⊆
C
→
C
∖
A
⊆
B
∧
¬
B
⊆
C
∖
A
↔
C
∖
B
⊆
A
∧
¬
A
⊆
C
∖
B
7
dfpss3
⊢
C
∖
A
⊂
B
↔
C
∖
A
⊆
B
∧
¬
B
⊆
C
∖
A
8
dfpss3
⊢
C
∖
B
⊂
A
↔
C
∖
B
⊆
A
∧
¬
A
⊆
C
∖
B
9
6
7
8
3bitr4g
⊢
A
⊆
C
∧
B
⊆
C
→
C
∖
A
⊂
B
↔
C
∖
B
⊂
A