Metamath Proof Explorer


Theorem pssdifcom1

Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014)

Ref Expression
Assertion pssdifcom1 A C B C C A B C B A

Proof

Step Hyp Ref Expression
1 difcom C A B C B A
2 1 a1i A C B C C A B C B A
3 ssconb B C A C B C A A C B
4 3 ancoms A C B C B C A A C B
5 4 notbid A C B C ¬ B C A ¬ A C B
6 2 5 anbi12d A C B C C A B ¬ B C A C B A ¬ A C B
7 dfpss3 C A B C A B ¬ B C A
8 dfpss3 C B A C B A ¬ A C B
9 6 7 8 3bitr4g A C B C C A B C B A