Metamath Proof Explorer


Theorem pssdifcom2

Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014)

Ref Expression
Assertion pssdifcom2 A C B C B C A A C B

Proof

Step Hyp Ref Expression
1 ssconb B C A C B C A A C B
2 1 ancoms A C B C B C A A C B
3 difcom C A B C B A
4 3 notbii ¬ C A B ¬ C B A
5 4 a1i A C B C ¬ C A B ¬ C B A
6 2 5 anbi12d A C B C B C A ¬ C A B A C B ¬ C B A
7 dfpss3 B C A B C A ¬ C A B
8 dfpss3 A C B A C B ¬ C B A
9 6 7 8 3bitr4g A C B C B C A A C B