Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
pssdifn0
Next ⟩
pssdif
Metamath Proof Explorer
Ascii
Unicode
Theorem
pssdifn0
Description:
A proper subclass has a nonempty difference.
(Contributed by
NM
, 3-May-1994)
Ref
Expression
Assertion
pssdifn0
⊢
A
⊆
B
∧
A
≠
B
→
B
∖
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
ssdif0
⊢
B
⊆
A
↔
B
∖
A
=
∅
2
eqss
⊢
A
=
B
↔
A
⊆
B
∧
B
⊆
A
3
2
simplbi2
⊢
A
⊆
B
→
B
⊆
A
→
A
=
B
4
1
3
syl5bir
⊢
A
⊆
B
→
B
∖
A
=
∅
→
A
=
B
5
4
necon3d
⊢
A
⊆
B
→
A
≠
B
→
B
∖
A
≠
∅
6
5
imp
⊢
A
⊆
B
∧
A
≠
B
→
B
∖
A
≠
∅