Metamath Proof Explorer


Theorem pssdifn0

Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994)

Ref Expression
Assertion pssdifn0 A B A B B A

Proof

Step Hyp Ref Expression
1 ssdif0 B A B A =
2 eqss A = B A B B A
3 2 simplbi2 A B B A A = B
4 1 3 syl5bir A B B A = A = B
5 4 necon3d A B A B B A
6 5 imp A B A B B A