Metamath Proof Explorer


Theorem psseq12d

Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004)

Ref Expression
Hypotheses psseq1d.1 φ A = B
psseq12d.2 φ C = D
Assertion psseq12d φ A C B D

Proof

Step Hyp Ref Expression
1 psseq1d.1 φ A = B
2 psseq12d.2 φ C = D
3 1 psseq1d φ A C B C
4 2 psseq2d φ B C B D
5 3 4 bitrd φ A C B D