Metamath Proof Explorer


Theorem psslinpr

Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion psslinpr A 𝑷 B 𝑷 A B A = B B A

Proof

Step Hyp Ref Expression
1 elprnq A 𝑷 x A x 𝑸
2 prub B 𝑷 y B x 𝑸 ¬ x B y < 𝑸 x
3 1 2 sylan2 B 𝑷 y B A 𝑷 x A ¬ x B y < 𝑸 x
4 prcdnq A 𝑷 x A y < 𝑸 x y A
5 4 adantl B 𝑷 y B A 𝑷 x A y < 𝑸 x y A
6 3 5 syld B 𝑷 y B A 𝑷 x A ¬ x B y A
7 6 exp43 B 𝑷 y B A 𝑷 x A ¬ x B y A
8 7 com3r A 𝑷 B 𝑷 y B x A ¬ x B y A
9 8 imp A 𝑷 B 𝑷 y B x A ¬ x B y A
10 9 imp4a A 𝑷 B 𝑷 y B x A ¬ x B y A
11 10 com23 A 𝑷 B 𝑷 x A ¬ x B y B y A
12 11 alrimdv A 𝑷 B 𝑷 x A ¬ x B y y B y A
13 12 exlimdv A 𝑷 B 𝑷 x x A ¬ x B y y B y A
14 nss ¬ A B x x A ¬ x B
15 sspss A B A B A = B
16 14 15 xchnxbi ¬ A B A = B x x A ¬ x B
17 sspss B A B A B = A
18 dfss2 B A y y B y A
19 17 18 bitr3i B A B = A y y B y A
20 13 16 19 3imtr4g A 𝑷 B 𝑷 ¬ A B A = B B A B = A
21 20 orrd A 𝑷 B 𝑷 A B A = B B A B = A
22 df-3or A B A = B B A A B A = B B A
23 or32 A B A = B B A A B B A A = B
24 orordir A B B A A = B A B A = B B A A = B
25 eqcom B = A A = B
26 25 orbi2i B A B = A B A A = B
27 26 orbi2i A B A = B B A B = A A B A = B B A A = B
28 24 27 bitr4i A B B A A = B A B A = B B A B = A
29 22 23 28 3bitri A B A = B B A A B A = B B A B = A
30 21 29 sylibr A 𝑷 B 𝑷 A B A = B B A