Metamath Proof Explorer


Theorem psspwb

Description: Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Assertion psspwb A B 𝒫 A 𝒫 B

Proof

Step Hyp Ref Expression
1 sspwb A B 𝒫 A 𝒫 B
2 pweqb A = B 𝒫 A = 𝒫 B
3 2 necon3bii A B 𝒫 A 𝒫 B
4 1 3 anbi12i A B A B 𝒫 A 𝒫 B 𝒫 A 𝒫 B
5 df-pss A B A B A B
6 df-pss 𝒫 A 𝒫 B 𝒫 A 𝒫 B 𝒫 A 𝒫 B
7 4 5 6 3bitr4i A B 𝒫 A 𝒫 B