Metamath Proof Explorer


Theorem psss

Description: Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010)

Ref Expression
Assertion psss R PosetRel R A × A PosetRel

Proof

Step Hyp Ref Expression
1 inss1 R A × A R
2 psrel R PosetRel Rel R
3 relss R A × A R Rel R Rel R A × A
4 1 2 3 mpsyl R PosetRel Rel R A × A
5 pstr2 R PosetRel R R R
6 trinxp R R R R A × A R A × A R A × A
7 5 6 syl R PosetRel R A × A R A × A R A × A
8 uniin R A × A R A × A
9 8 unissi R A × A R A × A
10 uniin R A × A R A × A
11 9 10 sstri R A × A R A × A
12 elin x R A × A x R x A × A
13 unixpid A × A = A
14 13 eleq2i x A × A x A
15 simprr R PosetRel x R x A x A
16 psdmrn R PosetRel dom R = R ran R = R
17 16 simpld R PosetRel dom R = R
18 17 eleq2d R PosetRel x dom R x R
19 18 biimpar R PosetRel x R x dom R
20 eqid dom R = dom R
21 20 psref R PosetRel x dom R x R x
22 19 21 syldan R PosetRel x R x R x
23 22 adantrr R PosetRel x R x A x R x
24 brinxp2 x R A × A x x A x A x R x
25 15 15 23 24 syl21anbrc R PosetRel x R x A x R A × A x
26 25 expr R PosetRel x R x A x R A × A x
27 14 26 syl5bi R PosetRel x R x A × A x R A × A x
28 27 expimpd R PosetRel x R x A × A x R A × A x
29 12 28 syl5bi R PosetRel x R A × A x R A × A x
30 29 ralrimiv R PosetRel x R A × A x R A × A x
31 ssralv R A × A R A × A x R A × A x R A × A x x R A × A x R A × A x
32 11 30 31 mpsyl R PosetRel x R A × A x R A × A x
33 1 ssbri x R A × A y x R y
34 1 ssbri y R A × A x y R x
35 psasym R PosetRel x R y y R x x = y
36 35 3expib R PosetRel x R y y R x x = y
37 33 34 36 syl2ani R PosetRel x R A × A y y R A × A x x = y
38 37 alrimivv R PosetRel x y x R A × A y y R A × A x x = y
39 asymref2 R A × A R A × A -1 = I R A × A x R A × A x R A × A x x y x R A × A y y R A × A x x = y
40 32 38 39 sylanbrc R PosetRel R A × A R A × A -1 = I R A × A
41 inex1g R PosetRel R A × A V
42 isps R A × A V R A × A PosetRel Rel R A × A R A × A R A × A R A × A R A × A R A × A -1 = I R A × A
43 41 42 syl R PosetRel R A × A PosetRel Rel R A × A R A × A R A × A R A × A R A × A R A × A -1 = I R A × A
44 4 7 40 43 mpbir3and R PosetRel R A × A PosetRel