Metamath Proof Explorer


Theorem psssdm

Description: Field of a subposet. (Contributed by FL, 19-Sep-2011) (Revised by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis psssdm.1 X = dom R
Assertion psssdm R PosetRel A X dom R A × A = A

Proof

Step Hyp Ref Expression
1 psssdm.1 X = dom R
2 1 psssdm2 R PosetRel dom R A × A = X A
3 sseqin2 A X X A = A
4 3 biimpi A X X A = A
5 2 4 sylan9eq R PosetRel A X dom R A × A = A