Metamath Proof Explorer


Theorem psssdm2

Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis psssdm.1 X = dom R
Assertion psssdm2 R PosetRel dom R A × A = X A

Proof

Step Hyp Ref Expression
1 psssdm.1 X = dom R
2 dmin dom R A × A dom R dom A × A
3 1 eqcomi dom R = X
4 dmxpid dom A × A = A
5 3 4 ineq12i dom R dom A × A = X A
6 2 5 sseqtri dom R A × A X A
7 6 a1i R PosetRel dom R A × A X A
8 simpr R PosetRel x X A x X A
9 8 elin2d R PosetRel x X A x A
10 elinel1 x X A x X
11 1 psref R PosetRel x X x R x
12 10 11 sylan2 R PosetRel x X A x R x
13 brinxp2 x R A × A x x A x A x R x
14 9 9 12 13 syl21anbrc R PosetRel x X A x R A × A x
15 vex x V
16 15 15 breldm x R A × A x x dom R A × A
17 14 16 syl R PosetRel x X A x dom R A × A
18 7 17 eqelssd R PosetRel dom R A × A = X A