Database
BASIC ORDER THEORY
Posets, directed sets, and lattices as relations
Posets and lattices as relations
psssdm2
Next ⟩
psssdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
psssdm2
Description:
Field of a subposet.
(Contributed by
Mario Carneiro
, 9-Sep-2015)
Ref
Expression
Hypothesis
psssdm.1
⊢
X
=
dom
⁡
R
Assertion
psssdm2
⊢
R
∈
PosetRel
→
dom
⁡
R
∩
A
×
A
=
X
∩
A
Proof
Step
Hyp
Ref
Expression
1
psssdm.1
⊢
X
=
dom
⁡
R
2
dmin
⊢
dom
⁡
R
∩
A
×
A
⊆
dom
⁡
R
∩
dom
⁡
A
×
A
3
1
eqcomi
⊢
dom
⁡
R
=
X
4
dmxpid
⊢
dom
⁡
A
×
A
=
A
5
3
4
ineq12i
⊢
dom
⁡
R
∩
dom
⁡
A
×
A
=
X
∩
A
6
2
5
sseqtri
⊢
dom
⁡
R
∩
A
×
A
⊆
X
∩
A
7
6
a1i
⊢
R
∈
PosetRel
→
dom
⁡
R
∩
A
×
A
⊆
X
∩
A
8
simpr
⊢
R
∈
PosetRel
∧
x
∈
X
∩
A
→
x
∈
X
∩
A
9
8
elin2d
⊢
R
∈
PosetRel
∧
x
∈
X
∩
A
→
x
∈
A
10
elinel1
⊢
x
∈
X
∩
A
→
x
∈
X
11
1
psref
⊢
R
∈
PosetRel
∧
x
∈
X
→
x
R
x
12
10
11
sylan2
⊢
R
∈
PosetRel
∧
x
∈
X
∩
A
→
x
R
x
13
brinxp2
⊢
x
R
∩
A
×
A
x
↔
x
∈
A
∧
x
∈
A
∧
x
R
x
14
9
9
12
13
syl21anbrc
⊢
R
∈
PosetRel
∧
x
∈
X
∩
A
→
x
R
∩
A
×
A
x
15
vex
⊢
x
∈
V
16
15
15
breldm
⊢
x
R
∩
A
×
A
x
→
x
∈
dom
⁡
R
∩
A
×
A
17
14
16
syl
⊢
R
∈
PosetRel
∧
x
∈
X
∩
A
→
x
∈
dom
⁡
R
∩
A
×
A
18
7
17
eqelssd
⊢
R
∈
PosetRel
→
dom
⁡
R
∩
A
×
A
=
X
∩
A