Metamath Proof Explorer


Theorem psssstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion psssstr A B B C A C

Proof

Step Hyp Ref Expression
1 sspss B C B C B = C
2 psstr A B B C A C
3 2 ex A B B C A C
4 psseq2 B = C A B A C
5 4 biimpcd A B B = C A C
6 3 5 jaod A B B C B = C A C
7 6 imp A B B C B = C A C
8 1 7 sylan2b A B B C A C