Metamath Proof Explorer


Theorem psstr

Description: Transitive law for proper subclass. Theorem 9 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion psstr ABBCAC

Proof

Step Hyp Ref Expression
1 pssss ABAB
2 pssss BCBC
3 1 2 sylan9ss ABBCAC
4 pssn2lp ¬CBBC
5 psseq1 A=CABCB
6 5 anbi1d A=CABBCCBBC
7 4 6 mtbiri A=C¬ABBC
8 7 con2i ABBC¬A=C
9 dfpss2 ACAC¬A=C
10 3 8 9 sylanbrc ABBCAC