Metamath Proof Explorer


Theorem psstrd

Description: Proper subclass inclusion is transitive. Deduction form of psstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses psstrd.1 φAB
psstrd.2 φBC
Assertion psstrd φAC

Proof

Step Hyp Ref Expression
1 psstrd.1 φAB
2 psstrd.2 φBC
3 psstr ABBCAC
4 1 2 3 syl2anc φAC