Metamath Proof Explorer


Theorem pstr2

Description: A poset is transitive. (Contributed by FL, 3-Aug-2009)

Ref Expression
Assertion pstr2 R PosetRel R R R

Proof

Step Hyp Ref Expression
1 isps R PosetRel R PosetRel Rel R R R R R R -1 = I R
2 1 ibi R PosetRel Rel R R R R R R -1 = I R
3 2 simp2d R PosetRel R R R