Metamath Proof Explorer


Theorem psubclsetN

Description: The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubclset.a A = Atoms K
psubclset.p ˙ = 𝑃 K
psubclset.c C = PSubCl K
Assertion psubclsetN K B C = s | s A ˙ ˙ s = s

Proof

Step Hyp Ref Expression
1 psubclset.a A = Atoms K
2 psubclset.p ˙ = 𝑃 K
3 psubclset.c C = PSubCl K
4 elex K B K V
5 fveq2 k = K Atoms k = Atoms K
6 5 1 eqtr4di k = K Atoms k = A
7 6 sseq2d k = K s Atoms k s A
8 fveq2 k = K 𝑃 k = 𝑃 K
9 8 2 eqtr4di k = K 𝑃 k = ˙
10 9 fveq1d k = K 𝑃 k s = ˙ s
11 9 10 fveq12d k = K 𝑃 k 𝑃 k s = ˙ ˙ s
12 11 eqeq1d k = K 𝑃 k 𝑃 k s = s ˙ ˙ s = s
13 7 12 anbi12d k = K s Atoms k 𝑃 k 𝑃 k s = s s A ˙ ˙ s = s
14 13 abbidv k = K s | s Atoms k 𝑃 k 𝑃 k s = s = s | s A ˙ ˙ s = s
15 df-psubclN PSubCl = k V s | s Atoms k 𝑃 k 𝑃 k s = s
16 1 fvexi A V
17 16 pwex 𝒫 A V
18 velpw s 𝒫 A s A
19 18 anbi1i s 𝒫 A ˙ ˙ s = s s A ˙ ˙ s = s
20 19 abbii s | s 𝒫 A ˙ ˙ s = s = s | s A ˙ ˙ s = s
21 ssab2 s | s 𝒫 A ˙ ˙ s = s 𝒫 A
22 20 21 eqsstrri s | s A ˙ ˙ s = s 𝒫 A
23 17 22 ssexi s | s A ˙ ˙ s = s V
24 14 15 23 fvmpt K V PSubCl K = s | s A ˙ ˙ s = s
25 3 24 syl5eq K V C = s | s A ˙ ˙ s = s
26 4 25 syl K B C = s | s A ˙ ˙ s = s