Metamath Proof Explorer


Theorem psubspi2N

Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses psubspset.l ˙ = K
psubspset.j ˙ = join K
psubspset.a A = Atoms K
psubspset.s S = PSubSp K
Assertion psubspi2N K D X S P A Q X R X P ˙ Q ˙ R P X

Proof

Step Hyp Ref Expression
1 psubspset.l ˙ = K
2 psubspset.j ˙ = join K
3 psubspset.a A = Atoms K
4 psubspset.s S = PSubSp K
5 oveq1 q = Q q ˙ r = Q ˙ r
6 5 breq2d q = Q P ˙ q ˙ r P ˙ Q ˙ r
7 oveq2 r = R Q ˙ r = Q ˙ R
8 7 breq2d r = R P ˙ Q ˙ r P ˙ Q ˙ R
9 6 8 rspc2ev Q X R X P ˙ Q ˙ R q X r X P ˙ q ˙ r
10 1 2 3 4 psubspi K D X S P A q X r X P ˙ q ˙ r P X
11 9 10 sylan2 K D X S P A Q X R X P ˙ Q ˙ R P X