Metamath Proof Explorer


Theorem ptbas

Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
Assertion ptbas A V F : A Top B TopBases

Proof

Step Hyp Ref Expression
1 ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
2 1 ptbasin2 A V F : A Top fi B = B
3 fibas fi B TopBases
4 2 3 eqeltrrdi A V F : A Top B TopBases