Metamath Proof Explorer


Theorem ptbasid

Description: The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
Assertion ptbasid A V F : A Top k A F k B

Proof

Step Hyp Ref Expression
1 ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
2 simpl A V F : A Top A V
3 0fin Fin
4 3 a1i A V F : A Top Fin
5 ffvelrn F : A Top k A F k Top
6 5 adantll A V F : A Top k A F k Top
7 eqid F k = F k
8 7 topopn F k Top F k F k
9 6 8 syl A V F : A Top k A F k F k
10 eqidd A V F : A Top k A F k = F k
11 1 2 4 9 10 elptr2 A V F : A Top k A F k B