Step |
Hyp |
Ref |
Expression |
1 |
|
ptbas.1 |
|
2 |
1
|
elpt |
|
3 |
1
|
elpt |
|
4 |
2 3
|
anbi12i |
|
5 |
|
exdistrv |
|
6 |
4 5
|
bitr4i |
|
7 |
|
an4 |
|
8 |
|
an6 |
|
9 |
|
df-3an |
|
10 |
8 9
|
bitri |
|
11 |
|
reeanv |
|
12 |
|
fveq2 |
|
13 |
|
fveq2 |
|
14 |
12 13
|
ineq12d |
|
15 |
14
|
cbvixpv |
|
16 |
|
simpl1l |
|
17 |
|
unfi |
|
18 |
17
|
ad2antrl |
|
19 |
|
simpl1r |
|
20 |
19
|
ffvelrnda |
|
21 |
|
simpl3l |
|
22 |
|
fveq2 |
|
23 |
12 22
|
eleq12d |
|
24 |
23
|
rspccva |
|
25 |
21 24
|
sylan |
|
26 |
|
simpl3r |
|
27 |
13 22
|
eleq12d |
|
28 |
27
|
rspccva |
|
29 |
26 28
|
sylan |
|
30 |
|
inopn |
|
31 |
20 25 29 30
|
syl3anc |
|
32 |
|
simprrl |
|
33 |
|
ssun1 |
|
34 |
|
sscon |
|
35 |
33 34
|
ax-mp |
|
36 |
35
|
sseli |
|
37 |
22
|
unieqd |
|
38 |
12 37
|
eqeq12d |
|
39 |
38
|
rspccva |
|
40 |
32 36 39
|
syl2an |
|
41 |
|
simprrr |
|
42 |
|
ssun2 |
|
43 |
|
sscon |
|
44 |
42 43
|
ax-mp |
|
45 |
44
|
sseli |
|
46 |
13 37
|
eqeq12d |
|
47 |
46
|
rspccva |
|
48 |
41 45 47
|
syl2an |
|
49 |
40 48
|
ineq12d |
|
50 |
|
inidm |
|
51 |
49 50
|
eqtrdi |
|
52 |
1 16 18 31 51
|
elptr2 |
|
53 |
15 52
|
eqeltrid |
|
54 |
53
|
expr |
|
55 |
54
|
rexlimdvva |
|
56 |
11 55
|
syl5bir |
|
57 |
56
|
3expb |
|
58 |
57
|
impr |
|
59 |
10 58
|
sylan2b |
|
60 |
|
ineq12 |
|
61 |
|
ixpin |
|
62 |
60 61
|
eqtr4di |
|
63 |
62
|
eleq1d |
|
64 |
59 63
|
syl5ibrcom |
|
65 |
64
|
expimpd |
|
66 |
7 65
|
syl5bi |
|
67 |
66
|
exlimdvv |
|
68 |
6 67
|
syl5bi |
|
69 |
68
|
imp |
|