Metamath Proof Explorer


Theorem ptbasin2

Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
Assertion ptbasin2 A V F : A Top fi B = B

Proof

Step Hyp Ref Expression
1 ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
2 1 ptbasin A V F : A Top u B v B u v B
3 2 ralrimivva A V F : A Top u B v B u v B
4 1 ptuni2 A V F : A Top k A F k = B
5 ixpexg k A F k V k A F k V
6 fvex F k V
7 6 uniex F k V
8 7 a1i k A F k V
9 5 8 mprg k A F k V
10 4 9 eqeltrrdi A V F : A Top B V
11 uniexb B V B V
12 10 11 sylibr A V F : A Top B V
13 inficl B V u B v B u v B fi B = B
14 12 13 syl A V F : A Top u B v B u v B fi B = B
15 3 14 mpbid A V F : A Top fi B = B