Step |
Hyp |
Ref |
Expression |
1 |
|
ptcld.a |
|
2 |
|
ptcld.f |
|
3 |
|
ptcld.c |
|
4 |
|
eqid |
|
5 |
4
|
cldss |
|
6 |
3 5
|
syl |
|
7 |
6
|
ralrimiva |
|
8 |
|
boxriin |
|
9 |
7 8
|
syl |
|
10 |
|
eqid |
|
11 |
10
|
ptuni |
|
12 |
1 2 11
|
syl2anc |
|
13 |
12
|
ineq1d |
|
14 |
|
pttop |
|
15 |
1 2 14
|
syl2anc |
|
16 |
|
sseq1 |
|
17 |
|
sseq1 |
|
18 |
|
simpl |
|
19 |
|
ssidd |
|
20 |
16 17 18 19
|
ifbothda |
|
21 |
20
|
ralimi |
|
22 |
|
ss2ixp |
|
23 |
7 21 22
|
3syl |
|
24 |
23
|
adantr |
|
25 |
12
|
adantr |
|
26 |
24 25
|
sseqtrd |
|
27 |
12
|
eqcomd |
|
28 |
27
|
difeq1d |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
7
|
adantr |
|
32 |
|
boxcutc |
|
33 |
30 31 32
|
syl2anc |
|
34 |
|
ixpeq2 |
|
35 |
|
fveq2 |
|
36 |
35
|
unieqd |
|
37 |
|
csbeq1a |
|
38 |
36 37
|
difeq12d |
|
39 |
38
|
adantl |
|
40 |
39
|
ifeq1da |
|
41 |
34 40
|
mprg |
|
42 |
41
|
a1i |
|
43 |
29 33 42
|
3eqtrd |
|
44 |
1
|
adantr |
|
45 |
2
|
adantr |
|
46 |
3
|
ralrimiva |
|
47 |
|
nfv |
|
48 |
|
nfcsb1v |
|
49 |
48
|
nfel1 |
|
50 |
|
2fveq3 |
|
51 |
37 50
|
eleq12d |
|
52 |
47 49 51
|
cbvralw |
|
53 |
46 52
|
sylib |
|
54 |
53
|
r19.21bi |
|
55 |
|
eqid |
|
56 |
55
|
cldopn |
|
57 |
54 56
|
syl |
|
58 |
44 45 57
|
ptopn2 |
|
59 |
43 58
|
eqeltrd |
|
60 |
|
eqid |
|
61 |
60
|
iscld |
|
62 |
15 61
|
syl |
|
63 |
62
|
adantr |
|
64 |
26 59 63
|
mpbir2and |
|
65 |
64
|
ralrimiva |
|
66 |
60
|
riincld |
|
67 |
15 65 66
|
syl2anc |
|
68 |
13 67
|
eqeltrd |
|
69 |
9 68
|
eqeltrd |
|