Metamath Proof Explorer


Theorem ptcld

Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypotheses ptcld.a φ A V
ptcld.f φ F : A Top
ptcld.c φ k A C Clsd F k
Assertion ptcld φ k A C Clsd 𝑡 F

Proof

Step Hyp Ref Expression
1 ptcld.a φ A V
2 ptcld.f φ F : A Top
3 ptcld.c φ k A C Clsd F k
4 eqid F k = F k
5 4 cldss C Clsd F k C F k
6 3 5 syl φ k A C F k
7 6 ralrimiva φ k A C F k
8 boxriin k A C F k k A C = k A F k x A k A if k = x C F k
9 7 8 syl φ k A C = k A F k x A k A if k = x C F k
10 eqid 𝑡 F = 𝑡 F
11 10 ptuni A V F : A Top k A F k = 𝑡 F
12 1 2 11 syl2anc φ k A F k = 𝑡 F
13 12 ineq1d φ k A F k x A k A if k = x C F k = 𝑡 F x A k A if k = x C F k
14 pttop A V F : A Top 𝑡 F Top
15 1 2 14 syl2anc φ 𝑡 F Top
16 sseq1 C = if k = x C F k C F k if k = x C F k F k
17 sseq1 F k = if k = x C F k F k F k if k = x C F k F k
18 simpl C F k k = x C F k
19 ssidd C F k ¬ k = x F k F k
20 16 17 18 19 ifbothda C F k if k = x C F k F k
21 20 ralimi k A C F k k A if k = x C F k F k
22 ss2ixp k A if k = x C F k F k k A if k = x C F k k A F k
23 7 21 22 3syl φ k A if k = x C F k k A F k
24 23 adantr φ x A k A if k = x C F k k A F k
25 12 adantr φ x A k A F k = 𝑡 F
26 24 25 sseqtrd φ x A k A if k = x C F k 𝑡 F
27 12 eqcomd φ 𝑡 F = k A F k
28 27 difeq1d φ 𝑡 F k A if k = x C F k = k A F k k A if k = x C F k
29 28 adantr φ x A 𝑡 F k A if k = x C F k = k A F k k A if k = x C F k
30 simpr φ x A x A
31 7 adantr φ x A k A C F k
32 boxcutc x A k A C F k k A F k k A if k = x C F k = k A if k = x F k C F k
33 30 31 32 syl2anc φ x A k A F k k A if k = x C F k = k A if k = x F k C F k
34 ixpeq2 k A if k = x F k C F k = if k = x F x x / k C F k k A if k = x F k C F k = k A if k = x F x x / k C F k
35 fveq2 k = x F k = F x
36 35 unieqd k = x F k = F x
37 csbeq1a k = x C = x / k C
38 36 37 difeq12d k = x F k C = F x x / k C
39 38 adantl k A k = x F k C = F x x / k C
40 39 ifeq1da k A if k = x F k C F k = if k = x F x x / k C F k
41 34 40 mprg k A if k = x F k C F k = k A if k = x F x x / k C F k
42 41 a1i φ x A k A if k = x F k C F k = k A if k = x F x x / k C F k
43 29 33 42 3eqtrd φ x A 𝑡 F k A if k = x C F k = k A if k = x F x x / k C F k
44 1 adantr φ x A A V
45 2 adantr φ x A F : A Top
46 3 ralrimiva φ k A C Clsd F k
47 nfv x C Clsd F k
48 nfcsb1v _ k x / k C
49 48 nfel1 k x / k C Clsd F x
50 2fveq3 k = x Clsd F k = Clsd F x
51 37 50 eleq12d k = x C Clsd F k x / k C Clsd F x
52 47 49 51 cbvralw k A C Clsd F k x A x / k C Clsd F x
53 46 52 sylib φ x A x / k C Clsd F x
54 53 r19.21bi φ x A x / k C Clsd F x
55 eqid F x = F x
56 55 cldopn x / k C Clsd F x F x x / k C F x
57 54 56 syl φ x A F x x / k C F x
58 44 45 57 ptopn2 φ x A k A if k = x F x x / k C F k 𝑡 F
59 43 58 eqeltrd φ x A 𝑡 F k A if k = x C F k 𝑡 F
60 eqid 𝑡 F = 𝑡 F
61 60 iscld 𝑡 F Top k A if k = x C F k Clsd 𝑡 F k A if k = x C F k 𝑡 F 𝑡 F k A if k = x C F k 𝑡 F
62 15 61 syl φ k A if k = x C F k Clsd 𝑡 F k A if k = x C F k 𝑡 F 𝑡 F k A if k = x C F k 𝑡 F
63 62 adantr φ x A k A if k = x C F k Clsd 𝑡 F k A if k = x C F k 𝑡 F 𝑡 F k A if k = x C F k 𝑡 F
64 26 59 63 mpbir2and φ x A k A if k = x C F k Clsd 𝑡 F
65 64 ralrimiva φ x A k A if k = x C F k Clsd 𝑡 F
66 60 riincld 𝑡 F Top x A k A if k = x C F k Clsd 𝑡 F 𝑡 F x A k A if k = x C F k Clsd 𝑡 F
67 15 65 66 syl2anc φ 𝑡 F x A k A if k = x C F k Clsd 𝑡 F
68 13 67 eqeltrd φ k A F k x A k A if k = x C F k Clsd 𝑡 F
69 9 68 eqeltrd φ k A C Clsd 𝑡 F