Metamath Proof Explorer


Theorem ptcldmpt

Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypotheses ptcldmpt.a φ A V
ptcldmpt.j φ k A J Top
ptcldmpt.c φ k A C Clsd J
Assertion ptcldmpt φ k A C Clsd 𝑡 k A J

Proof

Step Hyp Ref Expression
1 ptcldmpt.a φ A V
2 ptcldmpt.j φ k A J Top
3 ptcldmpt.c φ k A C Clsd J
4 nfcv _ l C
5 nfcsb1v _ k l / k C
6 csbeq1a k = l C = l / k C
7 4 5 6 cbvixp k A C = l A l / k C
8 2 fmpttd φ k A J : A Top
9 nfv k φ l A
10 nfcv _ k Clsd
11 nffvmpt1 _ k k A J l
12 10 11 nffv _ k Clsd k A J l
13 5 12 nfel k l / k C Clsd k A J l
14 9 13 nfim k φ l A l / k C Clsd k A J l
15 eleq1w k = l k A l A
16 15 anbi2d k = l φ k A φ l A
17 2fveq3 k = l Clsd k A J k = Clsd k A J l
18 6 17 eleq12d k = l C Clsd k A J k l / k C Clsd k A J l
19 16 18 imbi12d k = l φ k A C Clsd k A J k φ l A l / k C Clsd k A J l
20 simpr φ k A k A
21 eqid k A J = k A J
22 21 fvmpt2 k A J Top k A J k = J
23 20 2 22 syl2anc φ k A k A J k = J
24 23 fveq2d φ k A Clsd k A J k = Clsd J
25 3 24 eleqtrrd φ k A C Clsd k A J k
26 14 19 25 chvarfv φ l A l / k C Clsd k A J l
27 1 8 26 ptcld φ l A l / k C Clsd 𝑡 k A J
28 7 27 eqeltrid φ k A C Clsd 𝑡 k A J