Metamath Proof Explorer


Theorem ptcls

Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses ptcls.2 J = 𝑡 k A R
ptcls.a φ A V
ptcls.j φ k A R TopOn X
ptcls.c φ k A S X
Assertion ptcls φ cls J k A S = k A cls R S

Proof

Step Hyp Ref Expression
1 ptcls.2 J = 𝑡 k A R
2 ptcls.a φ A V
3 ptcls.j φ k A R TopOn X
4 ptcls.c φ k A S X
5 toponmax R TopOn X X R
6 3 5 syl φ k A X R
7 6 4 ssexd φ k A S V
8 7 ralrimiva φ k A S V
9 iunexg A V k A S V k A S V
10 2 8 9 syl2anc φ k A S V
11 axac3 CHOICE
12 acacni CHOICE A V AC _ A = V
13 11 2 12 sylancr φ AC _ A = V
14 10 13 eleqtrrd φ k A S AC _ A
15 1 2 3 4 14 ptclsg φ cls J k A S = k A cls R S