Metamath Proof Explorer


Theorem ptcmp

Description: Tychonoff's theorem: The product of compact spaces is compact. The proof uses the Axiom of Choice. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ptcmp A V F : A Comp 𝑡 F Comp

Proof

Step Hyp Ref Expression
1 fvex 𝑡 F V
2 1 uniex 𝑡 F V
3 axac3 CHOICE
4 acufl CHOICE UFL = V
5 3 4 ax-mp UFL = V
6 2 5 eleqtrri 𝑡 F UFL
7 cardeqv dom card = V
8 2 7 eleqtrri 𝑡 F dom card
9 6 8 elini 𝑡 F UFL dom card
10 eqid 𝑡 F = 𝑡 F
11 eqid 𝑡 F = 𝑡 F
12 10 11 ptcmpg A V F : A Comp 𝑡 F UFL dom card 𝑡 F Comp
13 9 12 mp3an3 A V F : A Comp 𝑡 F Comp