Step |
Hyp |
Ref |
Expression |
1 |
|
ptcmp.1 |
|
2 |
|
ptcmp.2 |
|
3 |
|
ptcmp.3 |
|
4 |
|
ptcmp.4 |
|
5 |
|
ptcmp.5 |
|
6 |
|
ptcmplem2.5 |
|
7 |
|
ptcmplem2.6 |
|
8 |
|
ptcmplem2.7 |
|
9 |
|
ptcmplem3.8 |
|
10 |
|
rabexg |
|
11 |
3 10
|
syl |
|
12 |
1 2 3 4 5 6 7 8
|
ptcmplem2 |
|
13 |
|
eldifi |
|
14 |
13
|
3ad2ant3 |
|
15 |
14
|
rabssdv |
|
16 |
15
|
ralrimivw |
|
17 |
|
ss2iun |
|
18 |
16 17
|
syl |
|
19 |
|
ssnum |
|
20 |
12 18 19
|
syl2anc |
|
21 |
|
elrabi |
|
22 |
8
|
adantr |
|
23 |
|
ssdif0 |
|
24 |
4
|
ffvelrnda |
|
25 |
24
|
adantr |
|
26 |
9
|
ssrab3 |
|
27 |
26
|
a1i |
|
28 |
|
simpr |
|
29 |
|
uniss |
|
30 |
26 29
|
mp1i |
|
31 |
28 30
|
eqssd |
|
32 |
|
eqid |
|
33 |
32
|
cmpcov |
|
34 |
25 27 31 33
|
syl3anc |
|
35 |
|
elfpw |
|
36 |
35
|
simplbi |
|
37 |
36
|
ad2antrl |
|
38 |
37
|
sselda |
|
39 |
|
imaeq2 |
|
40 |
39
|
eleq1d |
|
41 |
40 9
|
elrab2 |
|
42 |
41
|
simprbi |
|
43 |
38 42
|
syl |
|
44 |
43
|
fmpttd |
|
45 |
44
|
frnd |
|
46 |
35
|
simprbi |
|
47 |
46
|
ad2antrl |
|
48 |
|
eqid |
|
49 |
48
|
rnmpt |
|
50 |
|
abrexfi |
|
51 |
49 50
|
eqeltrid |
|
52 |
47 51
|
syl |
|
53 |
|
elfpw |
|
54 |
45 52 53
|
sylanbrc |
|
55 |
|
fveq2 |
|
56 |
|
fveq2 |
|
57 |
56
|
unieqd |
|
58 |
55 57
|
eleq12d |
|
59 |
|
simpr |
|
60 |
59 2
|
eleqtrdi |
|
61 |
|
vex |
|
62 |
61
|
elixp |
|
63 |
62
|
simprbi |
|
64 |
60 63
|
syl |
|
65 |
|
simp-4r |
|
66 |
58 64 65
|
rspcdva |
|
67 |
|
simplrr |
|
68 |
66 67
|
eleqtrd |
|
69 |
|
eluni2 |
|
70 |
68 69
|
sylib |
|
71 |
|
fveq1 |
|
72 |
71
|
eleq1d |
|
73 |
|
eqid |
|
74 |
73
|
mptpreima |
|
75 |
72 74
|
elrab2 |
|
76 |
75
|
baib |
|
77 |
76
|
ad2antlr |
|
78 |
77
|
rexbidva |
|
79 |
70 78
|
mpbird |
|
80 |
|
eliun |
|
81 |
79 80
|
sylibr |
|
82 |
81
|
ex |
|
83 |
82
|
ssrdv |
|
84 |
43
|
ralrimiva |
|
85 |
|
dfiun2g |
|
86 |
84 85
|
syl |
|
87 |
49
|
unieqi |
|
88 |
86 87
|
eqtr4di |
|
89 |
83 88
|
sseqtrd |
|
90 |
45
|
unissd |
|
91 |
7
|
ad3antrrr |
|
92 |
90 91
|
sseqtrrd |
|
93 |
89 92
|
eqssd |
|
94 |
|
unieq |
|
95 |
94
|
rspceeqv |
|
96 |
54 93 95
|
syl2anc |
|
97 |
34 96
|
rexlimddv |
|
98 |
97
|
ex |
|
99 |
23 98
|
syl5bir |
|
100 |
22 99
|
mtod |
|
101 |
|
neq0 |
|
102 |
100 101
|
sylib |
|
103 |
|
rexv |
|
104 |
102 103
|
sylibr |
|
105 |
21 104
|
sylan2 |
|
106 |
105
|
ralrimiva |
|
107 |
|
eleq1 |
|
108 |
107
|
ac6num |
|
109 |
11 20 106 108
|
syl3anc |
|
110 |
3
|
adantr |
|
111 |
110
|
mptexd |
|
112 |
|
fvex |
|
113 |
112
|
uniex |
|
114 |
113
|
uniex |
|
115 |
|
fvex |
|
116 |
114 115
|
ifex |
|
117 |
116
|
rgenw |
|
118 |
|
eqid |
|
119 |
118
|
fnmpt |
|
120 |
117 119
|
mp1i |
|
121 |
57
|
breq1d |
|
122 |
121
|
notbid |
|
123 |
122
|
ralrab |
|
124 |
|
iftrue |
|
125 |
124
|
ad2antll |
|
126 |
102
|
adantrr |
|
127 |
13
|
adantl |
|
128 |
|
simplrr |
|
129 |
|
en1b |
|
130 |
128 129
|
sylib |
|
131 |
127 130
|
eleqtrd |
|
132 |
|
elsni |
|
133 |
131 132
|
syl |
|
134 |
|
simpr |
|
135 |
133 134
|
eqeltrrd |
|
136 |
126 135
|
exlimddv |
|
137 |
136
|
adantlr |
|
138 |
125 137
|
eqeltrd |
|
139 |
138
|
a1d |
|
140 |
139
|
expr |
|
141 |
|
pm2.27 |
|
142 |
|
iffalse |
|
143 |
142
|
eleq1d |
|
144 |
141 143
|
sylibrd |
|
145 |
140 144
|
pm2.61d1 |
|
146 |
145
|
ralimdva |
|
147 |
123 146
|
syl5bi |
|
148 |
147
|
impr |
|
149 |
|
fneq1 |
|
150 |
|
fveq1 |
|
151 |
|
fveq2 |
|
152 |
151
|
unieqd |
|
153 |
152
|
breq1d |
|
154 |
152
|
unieqd |
|
155 |
|
fveq2 |
|
156 |
153 154 155
|
ifbieq12d |
|
157 |
|
fvex |
|
158 |
157
|
uniex |
|
159 |
158
|
uniex |
|
160 |
|
fvex |
|
161 |
159 160
|
ifex |
|
162 |
156 118 161
|
fvmpt |
|
163 |
150 162
|
sylan9eq |
|
164 |
163
|
eleq1d |
|
165 |
164
|
ralbidva |
|
166 |
149 165
|
anbi12d |
|
167 |
166
|
spcegv |
|
168 |
167
|
3impib |
|
169 |
111 120 148 168
|
syl3anc |
|
170 |
109 169
|
exlimddv |
|