Metamath Proof Explorer


Theorem ptcmplem4

Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses ptcmp.1 S = k A , u F k w X w k -1 u
ptcmp.2 X = n A F n
ptcmp.3 φ A V
ptcmp.4 φ F : A Comp
ptcmp.5 φ X UFL dom card
ptcmplem2.5 φ U ran S
ptcmplem2.6 φ X = U
ptcmplem2.7 φ ¬ z 𝒫 U Fin X = z
ptcmplem3.8 K = u F k | w X w k -1 u U
Assertion ptcmplem4 ¬ φ

Proof

Step Hyp Ref Expression
1 ptcmp.1 S = k A , u F k w X w k -1 u
2 ptcmp.2 X = n A F n
3 ptcmp.3 φ A V
4 ptcmp.4 φ F : A Comp
5 ptcmp.5 φ X UFL dom card
6 ptcmplem2.5 φ U ran S
7 ptcmplem2.6 φ X = U
8 ptcmplem2.7 φ ¬ z 𝒫 U Fin X = z
9 ptcmplem3.8 K = u F k | w X w k -1 u U
10 1 2 3 4 5 6 7 8 9 ptcmplem3 φ f f Fn A k A f k F k K
11 simprl φ f Fn A k A f k F k K f Fn A
12 eldifi f k F k K f k F k
13 12 ralimi k A f k F k K k A f k F k
14 fveq2 n = k f n = f k
15 fveq2 n = k F n = F k
16 15 unieqd n = k F n = F k
17 14 16 eleq12d n = k f n F n f k F k
18 17 cbvralvw n A f n F n k A f k F k
19 13 18 sylibr k A f k F k K n A f n F n
20 19 ad2antll φ f Fn A k A f k F k K n A f n F n
21 vex f V
22 21 elixp f n A F n f Fn A n A f n F n
23 11 20 22 sylanbrc φ f Fn A k A f k F k K f n A F n
24 23 2 eleqtrrdi φ f Fn A k A f k F k K f X
25 7 adantr φ f Fn A k A f k F k K X = U
26 24 25 eleqtrd φ f Fn A k A f k F k K f U
27 eluni2 f U v U f v
28 26 27 sylib φ f Fn A k A f k F k K v U f v
29 simplrr φ f Fn A v U f v k A f k F k K f v
30 29 adantr φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u f v
31 simprr φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u v = w X w k -1 u
32 30 31 eleqtrd φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u f w X w k -1 u
33 fveq1 w = f w k = f k
34 33 eleq1d w = f w k u f k u
35 eqid w X w k = w X w k
36 35 mptpreima w X w k -1 u = w X | w k u
37 34 36 elrab2 f w X w k -1 u f X f k u
38 37 simprbi f w X w k -1 u f k u
39 32 38 syl φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u f k u
40 simprl φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u u F k
41 simplrl φ f Fn A v U f v k A f k F k K v U
42 41 adantr φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u v U
43 31 42 eqeltrrd φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u w X w k -1 u U
44 rabid u u F k | w X w k -1 u U u F k w X w k -1 u U
45 40 43 44 sylanbrc φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u u u F k | w X w k -1 u U
46 45 9 eleqtrrdi φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u u K
47 elunii f k u u K f k K
48 39 46 47 syl2anc φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u f k K
49 48 rexlimdvaa φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u f k K
50 49 expr φ f Fn A v U f v k A f k F k K u F k v = w X w k -1 u f k K
51 50 ralimdva φ f Fn A v U f v k A f k F k K k A u F k v = w X w k -1 u f k K
52 51 ex φ f Fn A v U f v k A f k F k K k A u F k v = w X w k -1 u f k K
53 52 com23 φ f Fn A k A f k F k K v U f v k A u F k v = w X w k -1 u f k K
54 53 impr φ f Fn A k A f k F k K v U f v k A u F k v = w X w k -1 u f k K
55 54 imp φ f Fn A k A f k F k K v U f v k A u F k v = w X w k -1 u f k K
56 6 adantr φ f Fn A k A f k F k K U ran S
57 56 sselda φ f Fn A k A f k F k K v U v ran S
58 57 adantrr φ f Fn A k A f k F k K v U f v v ran S
59 1 rnmpo ran S = v | k A u F k v = w X w k -1 u
60 58 59 eleqtrdi φ f Fn A k A f k F k K v U f v v v | k A u F k v = w X w k -1 u
61 abid v v | k A u F k v = w X w k -1 u k A u F k v = w X w k -1 u
62 60 61 sylib φ f Fn A k A f k F k K v U f v k A u F k v = w X w k -1 u
63 rexim k A u F k v = w X w k -1 u f k K k A u F k v = w X w k -1 u k A f k K
64 55 62 63 sylc φ f Fn A k A f k F k K v U f v k A f k K
65 28 64 rexlimddv φ f Fn A k A f k F k K k A f k K
66 eldifn f k F k K ¬ f k K
67 66 ralimi k A f k F k K k A ¬ f k K
68 67 ad2antll φ f Fn A k A f k F k K k A ¬ f k K
69 ralnex k A ¬ f k K ¬ k A f k K
70 68 69 sylib φ f Fn A k A f k F k K ¬ k A f k K
71 65 70 pm2.65da φ ¬ f Fn A k A f k F k K
72 71 nexdv φ ¬ f f Fn A k A f k F k K
73 10 72 pm2.65i ¬ φ