Step |
Hyp |
Ref |
Expression |
1 |
|
ptcmp.1 |
|
2 |
|
ptcmp.2 |
|
3 |
|
ptcmp.3 |
|
4 |
|
ptcmp.4 |
|
5 |
|
ptcmp.5 |
|
6 |
|
ptcmplem2.5 |
|
7 |
|
ptcmplem2.6 |
|
8 |
|
ptcmplem2.7 |
|
9 |
|
ptcmplem3.8 |
|
10 |
1 2 3 4 5 6 7 8 9
|
ptcmplem3 |
|
11 |
|
simprl |
|
12 |
|
eldifi |
|
13 |
12
|
ralimi |
|
14 |
|
fveq2 |
|
15 |
|
fveq2 |
|
16 |
15
|
unieqd |
|
17 |
14 16
|
eleq12d |
|
18 |
17
|
cbvralvw |
|
19 |
13 18
|
sylibr |
|
20 |
19
|
ad2antll |
|
21 |
|
vex |
|
22 |
21
|
elixp |
|
23 |
11 20 22
|
sylanbrc |
|
24 |
23 2
|
eleqtrrdi |
|
25 |
7
|
adantr |
|
26 |
24 25
|
eleqtrd |
|
27 |
|
eluni2 |
|
28 |
26 27
|
sylib |
|
29 |
|
simplrr |
|
30 |
29
|
adantr |
|
31 |
|
simprr |
|
32 |
30 31
|
eleqtrd |
|
33 |
|
fveq1 |
|
34 |
33
|
eleq1d |
|
35 |
|
eqid |
|
36 |
35
|
mptpreima |
|
37 |
34 36
|
elrab2 |
|
38 |
37
|
simprbi |
|
39 |
32 38
|
syl |
|
40 |
|
simprl |
|
41 |
|
simplrl |
|
42 |
41
|
adantr |
|
43 |
31 42
|
eqeltrrd |
|
44 |
|
rabid |
|
45 |
40 43 44
|
sylanbrc |
|
46 |
45 9
|
eleqtrrdi |
|
47 |
|
elunii |
|
48 |
39 46 47
|
syl2anc |
|
49 |
48
|
rexlimdvaa |
|
50 |
49
|
expr |
|
51 |
50
|
ralimdva |
|
52 |
51
|
ex |
|
53 |
52
|
com23 |
|
54 |
53
|
impr |
|
55 |
54
|
imp |
|
56 |
6
|
adantr |
|
57 |
56
|
sselda |
|
58 |
57
|
adantrr |
|
59 |
1
|
rnmpo |
|
60 |
58 59
|
eleqtrdi |
|
61 |
|
abid |
|
62 |
60 61
|
sylib |
|
63 |
|
rexim |
|
64 |
55 62 63
|
sylc |
|
65 |
28 64
|
rexlimddv |
|
66 |
|
eldifn |
|
67 |
66
|
ralimi |
|
68 |
67
|
ad2antll |
|
69 |
|
ralnex |
|
70 |
68 69
|
sylib |
|
71 |
65 70
|
pm2.65da |
|
72 |
71
|
nexdv |
|
73 |
10 72
|
pm2.65i |
|