Step |
Hyp |
Ref |
Expression |
1 |
|
ptcmp.1 |
|
2 |
|
ptcmp.2 |
|
3 |
|
ptcmp.3 |
|
4 |
|
ptcmp.4 |
|
5 |
|
ptcmp.5 |
|
6 |
5
|
elin1d |
|
7 |
1 2 3 4 5
|
ptcmplem1 |
|
8 |
7
|
simpld |
|
9 |
7
|
simprd |
|
10 |
|
elpwi |
|
11 |
3
|
ad2antrr |
|
12 |
4
|
ad2antrr |
|
13 |
5
|
ad2antrr |
|
14 |
|
simplrl |
|
15 |
|
simplrr |
|
16 |
|
simpr |
|
17 |
|
imaeq2 |
|
18 |
17
|
eleq1d |
|
19 |
18
|
cbvrabv |
|
20 |
1 2 11 12 13 14 15 16 19
|
ptcmplem4 |
|
21 |
|
iman |
|
22 |
20 21
|
mpbir |
|
23 |
22
|
expr |
|
24 |
10 23
|
sylan2 |
|
25 |
24
|
adantlr |
|
26 |
|
velpw |
|
27 |
|
eldif |
|
28 |
|
elpwunsn |
|
29 |
27 28
|
sylbir |
|
30 |
26 29
|
sylanbr |
|
31 |
30
|
adantll |
|
32 |
|
snssi |
|
33 |
32
|
adantl |
|
34 |
|
snfi |
|
35 |
|
elfpw |
|
36 |
33 34 35
|
sylanblrc |
|
37 |
|
unisng |
|
38 |
37
|
eqcomd |
|
39 |
38
|
adantl |
|
40 |
|
unieq |
|
41 |
40
|
rspceeqv |
|
42 |
36 39 41
|
syl2anc |
|
43 |
42
|
a1d |
|
44 |
31 43
|
syldan |
|
45 |
25 44
|
pm2.61dan |
|
46 |
45
|
impr |
|
47 |
6 8 9 46
|
alexsub |
|