Step |
Hyp |
Ref |
Expression |
1 |
|
ptcn.2 |
|
2 |
|
ptcn.3 |
|
3 |
|
ptcn.4 |
|
4 |
|
ptcn.5 |
|
5 |
|
ptcn.6 |
|
6 |
2
|
adantr |
|
7 |
4
|
ffvelrnda |
|
8 |
|
toptopon2 |
|
9 |
7 8
|
sylib |
|
10 |
|
cnf2 |
|
11 |
6 9 5 10
|
syl3anc |
|
12 |
11
|
fvmptelrn |
|
13 |
12
|
an32s |
|
14 |
13
|
ralrimiva |
|
15 |
3
|
adantr |
|
16 |
|
mptelixpg |
|
17 |
15 16
|
syl |
|
18 |
14 17
|
mpbird |
|
19 |
1
|
ptuni |
|
20 |
3 4 19
|
syl2anc |
|
21 |
20
|
adantr |
|
22 |
18 21
|
eleqtrd |
|
23 |
22
|
fmpttd |
|
24 |
2
|
adantr |
|
25 |
3
|
adantr |
|
26 |
4
|
adantr |
|
27 |
|
simpr |
|
28 |
5
|
adantlr |
|
29 |
|
simplr |
|
30 |
|
toponuni |
|
31 |
2 30
|
syl |
|
32 |
31
|
ad2antrr |
|
33 |
29 32
|
eleqtrd |
|
34 |
|
eqid |
|
35 |
34
|
cncnpi |
|
36 |
28 33 35
|
syl2anc |
|
37 |
1 24 25 26 27 36
|
ptcnp |
|
38 |
37
|
ralrimiva |
|
39 |
|
pttop |
|
40 |
3 4 39
|
syl2anc |
|
41 |
1 40
|
eqeltrid |
|
42 |
|
toptopon2 |
|
43 |
41 42
|
sylib |
|
44 |
|
cncnp |
|
45 |
2 43 44
|
syl2anc |
|
46 |
23 38 45
|
mpbir2and |
|