Metamath Proof Explorer


Theorem ptcn

Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptcn.2 K = 𝑡 F
ptcn.3 φ J TopOn X
ptcn.4 φ I V
ptcn.5 φ F : I Top
ptcn.6 φ k I x X A J Cn F k
Assertion ptcn φ x X k I A J Cn K

Proof

Step Hyp Ref Expression
1 ptcn.2 K = 𝑡 F
2 ptcn.3 φ J TopOn X
3 ptcn.4 φ I V
4 ptcn.5 φ F : I Top
5 ptcn.6 φ k I x X A J Cn F k
6 2 adantr φ k I J TopOn X
7 4 ffvelrnda φ k I F k Top
8 toptopon2 F k Top F k TopOn F k
9 7 8 sylib φ k I F k TopOn F k
10 cnf2 J TopOn X F k TopOn F k x X A J Cn F k x X A : X F k
11 6 9 5 10 syl3anc φ k I x X A : X F k
12 11 fvmptelrn φ k I x X A F k
13 12 an32s φ x X k I A F k
14 13 ralrimiva φ x X k I A F k
15 3 adantr φ x X I V
16 mptelixpg I V k I A k I F k k I A F k
17 15 16 syl φ x X k I A k I F k k I A F k
18 14 17 mpbird φ x X k I A k I F k
19 1 ptuni I V F : I Top k I F k = K
20 3 4 19 syl2anc φ k I F k = K
21 20 adantr φ x X k I F k = K
22 18 21 eleqtrd φ x X k I A K
23 22 fmpttd φ x X k I A : X K
24 2 adantr φ z X J TopOn X
25 3 adantr φ z X I V
26 4 adantr φ z X F : I Top
27 simpr φ z X z X
28 5 adantlr φ z X k I x X A J Cn F k
29 simplr φ z X k I z X
30 toponuni J TopOn X X = J
31 2 30 syl φ X = J
32 31 ad2antrr φ z X k I X = J
33 29 32 eleqtrd φ z X k I z J
34 eqid J = J
35 34 cncnpi x X A J Cn F k z J x X A J CnP F k z
36 28 33 35 syl2anc φ z X k I x X A J CnP F k z
37 1 24 25 26 27 36 ptcnp φ z X x X k I A J CnP K z
38 37 ralrimiva φ z X x X k I A J CnP K z
39 pttop I V F : I Top 𝑡 F Top
40 3 4 39 syl2anc φ 𝑡 F Top
41 1 40 eqeltrid φ K Top
42 toptopon2 K Top K TopOn K
43 41 42 sylib φ K TopOn K
44 cncnp J TopOn X K TopOn K x X k I A J Cn K x X k I A : X K z X x X k I A J CnP K z
45 2 43 44 syl2anc φ x X k I A J Cn K x X k I A : X K z X x X k I A J CnP K z
46 23 38 45 mpbir2and φ x X k I A J Cn K