Metamath Proof Explorer


Theorem pthd

Description: Two words representing a trail which also represent a path in a graph. (Contributed by AV, 10-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses pthd.p φ P Word V
pthd.r R = P 1
pthd.s φ i 0 ..^ P j 1 ..^ R i j P i P j
pthd.f F = R
pthd.t φ F Trails G P
Assertion pthd φ F Paths G P

Proof

Step Hyp Ref Expression
1 pthd.p φ P Word V
2 pthd.r R = P 1
3 pthd.s φ i 0 ..^ P j 1 ..^ R i j P i P j
4 pthd.f F = R
5 pthd.t φ F Trails G P
6 4 2 eqtri F = P 1
7 4 oveq2i 1 ..^ F = 1 ..^ R
8 7 raleqi j 1 ..^ F i j P i P j j 1 ..^ R i j P i P j
9 8 ralbii i 0 ..^ P j 1 ..^ F i j P i P j i 0 ..^ P j 1 ..^ R i j P i P j
10 3 9 sylibr φ i 0 ..^ P j 1 ..^ F i j P i P j
11 1 6 10 pthdlem1 φ Fun P 1 ..^ F -1
12 1 6 10 pthdlem2 φ P 0 F P 1 ..^ F =
13 ispth F Paths G P F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F =
14 5 11 12 13 syl3anbrc φ F Paths G P