Metamath Proof Explorer


Theorem pthdadjvtx

Description: The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion pthdadjvtx F Paths G P 1 < F I 0 ..^ F P I P I + 1

Proof

Step Hyp Ref Expression
1 elfzo0l I 0 ..^ F I = 0 I 1 ..^ F
2 simpr 1 < F F Paths G P F Paths G P
3 pthiswlk F Paths G P F Walks G P
4 wlkcl F Walks G P F 0
5 1zzd F 0 1 < F 1
6 nn0z F 0 F
7 6 adantr F 0 1 < F F
8 simpr F 0 1 < F 1 < F
9 fzolb 1 1 ..^ F 1 F 1 < F
10 5 7 8 9 syl3anbrc F 0 1 < F 1 1 ..^ F
11 0elfz F 0 0 0 F
12 11 adantr F 0 1 < F 0 0 F
13 ax-1ne0 1 0
14 13 a1i F 0 1 < F 1 0
15 10 12 14 3jca F 0 1 < F 1 1 ..^ F 0 0 F 1 0
16 15 ex F 0 1 < F 1 1 ..^ F 0 0 F 1 0
17 3 4 16 3syl F Paths G P 1 < F 1 1 ..^ F 0 0 F 1 0
18 17 impcom 1 < F F Paths G P 1 1 ..^ F 0 0 F 1 0
19 pthdivtx F Paths G P 1 1 ..^ F 0 0 F 1 0 P 1 P 0
20 2 18 19 syl2anc 1 < F F Paths G P P 1 P 0
21 20 necomd 1 < F F Paths G P P 0 P 1
22 21 3adant1 I = 0 1 < F F Paths G P P 0 P 1
23 fveq2 I = 0 P I = P 0
24 fv0p1e1 I = 0 P I + 1 = P 1
25 23 24 neeq12d I = 0 P I P I + 1 P 0 P 1
26 25 3ad2ant1 I = 0 1 < F F Paths G P P I P I + 1 P 0 P 1
27 22 26 mpbird I = 0 1 < F F Paths G P P I P I + 1
28 27 3exp I = 0 1 < F F Paths G P P I P I + 1
29 simp3 I 1 ..^ F 1 < F F Paths G P F Paths G P
30 id I 1 ..^ F I 1 ..^ F
31 fzo0ss1 1 ..^ F 0 ..^ F
32 31 sseli I 1 ..^ F I 0 ..^ F
33 fzofzp1 I 0 ..^ F I + 1 0 F
34 32 33 syl I 1 ..^ F I + 1 0 F
35 elfzoelz I 1 ..^ F I
36 35 zcnd I 1 ..^ F I
37 1cnd I 1 ..^ F 1
38 13 a1i I 1 ..^ F 1 0
39 36 37 38 3jca I 1 ..^ F I 1 1 0
40 addn0nid I 1 1 0 I + 1 I
41 40 necomd I 1 1 0 I I + 1
42 39 41 syl I 1 ..^ F I I + 1
43 30 34 42 3jca I 1 ..^ F I 1 ..^ F I + 1 0 F I I + 1
44 43 3ad2ant1 I 1 ..^ F 1 < F F Paths G P I 1 ..^ F I + 1 0 F I I + 1
45 pthdivtx F Paths G P I 1 ..^ F I + 1 0 F I I + 1 P I P I + 1
46 29 44 45 syl2anc I 1 ..^ F 1 < F F Paths G P P I P I + 1
47 46 3exp I 1 ..^ F 1 < F F Paths G P P I P I + 1
48 28 47 jaoi I = 0 I 1 ..^ F 1 < F F Paths G P P I P I + 1
49 1 48 syl I 0 ..^ F 1 < F F Paths G P P I P I + 1
50 49 3imp31 F Paths G P 1 < F I 0 ..^ F P I P I + 1