| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pthd.p |
|
| 2 |
|
pthd.r |
|
| 3 |
|
pthd.s |
|
| 4 |
|
lencl |
|
| 5 |
|
df-ne |
|
| 6 |
|
elnnne0 |
|
| 7 |
6
|
simplbi2 |
|
| 8 |
5 7
|
biimtrrid |
|
| 9 |
1 4 8
|
3syl |
|
| 10 |
|
eqid |
|
| 11 |
10
|
orci |
|
| 12 |
1 2 3
|
pthdlem2lem |
|
| 13 |
11 12
|
mp3an3 |
|
| 14 |
|
eqid |
|
| 15 |
14
|
olci |
|
| 16 |
1 2 3
|
pthdlem2lem |
|
| 17 |
15 16
|
mp3an3 |
|
| 18 |
|
wrdffz |
|
| 19 |
1 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
2
|
oveq2i |
|
| 22 |
21
|
feq2i |
|
| 23 |
20 22
|
sylibr |
|
| 24 |
|
nnm1nn0 |
|
| 25 |
2 24
|
eqeltrid |
|
| 26 |
25
|
adantl |
|
| 27 |
|
fvinim0ffz |
|
| 28 |
23 26 27
|
syl2anc |
|
| 29 |
13 17 28
|
mpbir2and |
|
| 30 |
29
|
ex |
|
| 31 |
9 30
|
syld |
|
| 32 |
|
oveq1 |
|
| 33 |
2 32
|
eqtrid |
|
| 34 |
33
|
oveq2d |
|
| 35 |
|
0le2 |
|
| 36 |
|
1p1e2 |
|
| 37 |
35 36
|
breqtrri |
|
| 38 |
|
0re |
|
| 39 |
|
1re |
|
| 40 |
38 39 39
|
lesubadd2i |
|
| 41 |
37 40
|
mpbir |
|
| 42 |
|
1z |
|
| 43 |
|
0z |
|
| 44 |
|
peano2zm |
|
| 45 |
43 44
|
ax-mp |
|
| 46 |
|
fzon |
|
| 47 |
42 45 46
|
mp2an |
|
| 48 |
41 47
|
mpbi |
|
| 49 |
34 48
|
eqtrdi |
|
| 50 |
49
|
imaeq2d |
|
| 51 |
|
ima0 |
|
| 52 |
50 51
|
eqtrdi |
|
| 53 |
52
|
ineq2d |
|
| 54 |
|
in0 |
|
| 55 |
53 54
|
eqtrdi |
|
| 56 |
31 55
|
pm2.61d2 |
|