Metamath Proof Explorer


Theorem pthonpth

Description: A path is a path between its endpoints. (Contributed by AV, 31-Jan-2021)

Ref Expression
Assertion pthonpth F Paths G P F P 0 PathsOn G P F P

Proof

Step Hyp Ref Expression
1 pthistrl F Paths G P F Trails G P
2 trlontrl F Trails G P F P 0 TrailsOn G P F P
3 1 2 syl F Paths G P F P 0 TrailsOn G P F P
4 id F Paths G P F Paths G P
5 pthiswlk F Paths G P F Walks G P
6 eqid Vtx G = Vtx G
7 6 wlkepvtx F Walks G P P 0 Vtx G P F Vtx G
8 wlkv F Walks G P G V F V P V
9 3simpc G V F V P V F V P V
10 8 9 syl F Walks G P F V P V
11 7 10 jca F Walks G P P 0 Vtx G P F Vtx G F V P V
12 6 ispthson P 0 Vtx G P F Vtx G F V P V F P 0 PathsOn G P F P F P 0 TrailsOn G P F P F Paths G P
13 5 11 12 3syl F Paths G P F P 0 PathsOn G P F P F P 0 TrailsOn G P F P F Paths G P
14 3 4 13 mpbir2and F Paths G P F P 0 PathsOn G P F P