Database
GRAPH THEORY
Walks, paths and cycles
Paths and simple paths
pthonpth
Next ⟩
isspthonpth
Metamath Proof Explorer
Ascii
Unicode
Theorem
pthonpth
Description:
A path is a path between its endpoints.
(Contributed by
AV
, 31-Jan-2021)
Ref
Expression
Assertion
pthonpth
⊢
F
Paths
⁡
G
P
→
F
P
⁡
0
PathsOn
⁡
G
P
⁡
F
P
Proof
Step
Hyp
Ref
Expression
1
pthistrl
⊢
F
Paths
⁡
G
P
→
F
Trails
⁡
G
P
2
trlontrl
⊢
F
Trails
⁡
G
P
→
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P
3
1
2
syl
⊢
F
Paths
⁡
G
P
→
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P
4
id
⊢
F
Paths
⁡
G
P
→
F
Paths
⁡
G
P
5
pthiswlk
⊢
F
Paths
⁡
G
P
→
F
Walks
⁡
G
P
6
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
7
6
wlkepvtx
⊢
F
Walks
⁡
G
P
→
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
8
wlkv
⊢
F
Walks
⁡
G
P
→
G
∈
V
∧
F
∈
V
∧
P
∈
V
9
3simpc
⊢
G
∈
V
∧
F
∈
V
∧
P
∈
V
→
F
∈
V
∧
P
∈
V
10
8
9
syl
⊢
F
Walks
⁡
G
P
→
F
∈
V
∧
P
∈
V
11
7
10
jca
⊢
F
Walks
⁡
G
P
→
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
∧
F
∈
V
∧
P
∈
V
12
6
ispthson
⊢
P
⁡
0
∈
Vtx
⁡
G
∧
P
⁡
F
∈
Vtx
⁡
G
∧
F
∈
V
∧
P
∈
V
→
F
P
⁡
0
PathsOn
⁡
G
P
⁡
F
P
↔
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P
∧
F
Paths
⁡
G
P
13
5
11
12
3syl
⊢
F
Paths
⁡
G
P
→
F
P
⁡
0
PathsOn
⁡
G
P
⁡
F
P
↔
F
P
⁡
0
TrailsOn
⁡
G
P
⁡
F
P
∧
F
Paths
⁡
G
P
14
3
4
13
mpbir2and
⊢
F
Paths
⁡
G
P
→
F
P
⁡
0
PathsOn
⁡
G
P
⁡
F
P