Metamath Proof Explorer


Theorem pthsonprop

Description: Properties of a path between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 16-Jan-2021)

Ref Expression
Hypothesis pthsonfval.v V = Vtx G
Assertion pthsonprop F A PathsOn G B P G V A V B V F V P V F A TrailsOn G B P F Paths G P

Proof

Step Hyp Ref Expression
1 pthsonfval.v V = Vtx G
2 1 ispthson A V B V F V P V F A PathsOn G B P F A TrailsOn G B P F Paths G P
3 2 3adantl1 G V A V B V F V P V F A PathsOn G B P F A TrailsOn G B P F Paths G P
4 df-pthson PathsOn = g V a Vtx g , b Vtx g f p | f a TrailsOn g b p f Paths g p
5 pthiswlk f Paths G p f Walks G p
6 5 adantl G V A V B V f Paths G p f Walks G p
7 1 3 4 6 wksonproplem F A PathsOn G B P G V A V B V F V P V F A TrailsOn G B P F Paths G P