| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcl |
|
| 2 |
1
|
3ad2ant2 |
|
| 3 |
2
|
coscld |
|
| 4 |
3
|
negnegd |
|
| 5 |
|
addlid |
|
| 6 |
5
|
oveq1d |
|
| 7 |
2 6
|
syl |
|
| 8 |
|
0cnd |
|
| 9 |
|
addcl |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
3adant3 |
|
| 12 |
8 11 2
|
pnpcan2d |
|
| 13 |
|
simp3 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
7 12 14
|
3eqtr3rd |
|
| 16 |
|
df-neg |
|
| 17 |
15 16
|
eqtr4di |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
cosmpi |
|
| 20 |
2 19
|
syl |
|
| 21 |
|
cosneg |
|
| 22 |
11 21
|
syl |
|
| 23 |
18 20 22
|
3eqtr3d |
|
| 24 |
23
|
negeqd |
|
| 25 |
4 24
|
eqtr3d |
|
| 26 |
25
|
oveq2d |
|
| 27 |
|
subcl |
|
| 28 |
27
|
adantl |
|
| 29 |
28
|
coscld |
|
| 30 |
29
|
3adant3 |
|
| 31 |
11
|
coscld |
|
| 32 |
30 31
|
subnegd |
|
| 33 |
26 32
|
eqtrd |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
subcl |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
37
|
coscld |
|
| 39 |
38 31
|
subcld |
|
| 40 |
30 31
|
addcld |
|
| 41 |
|
2cnne0 |
|
| 42 |
41
|
a1i |
|
| 43 |
|
divdir |
|
| 44 |
39 40 42 43
|
syl3anc |
|
| 45 |
38 31 30
|
nppcan3d |
|
| 46 |
45
|
oveq1d |
|
| 47 |
44 46
|
eqtr3d |
|
| 48 |
35 47
|
eqtrd |
|
| 49 |
|
sinmul |
|
| 50 |
49
|
3ad2ant1 |
|
| 51 |
|
sinmul |
|
| 52 |
51
|
3ad2ant2 |
|
| 53 |
50 52
|
oveq12d |
|
| 54 |
|
simplr |
|
| 55 |
|
simpll |
|
| 56 |
|
simprl |
|
| 57 |
54 55 56
|
pnpcan2d |
|
| 58 |
57
|
fveq2d |
|
| 59 |
58
|
3adant3 |
|
| 60 |
1
|
adantl |
|
| 61 |
10 60 28
|
3jca |
|
| 62 |
61
|
3adant3 |
|
| 63 |
|
addass |
|
| 64 |
62 63
|
syl |
|
| 65 |
|
oveq1 |
|
| 66 |
65
|
3ad2ant3 |
|
| 67 |
|
simpl |
|
| 68 |
|
simpr |
|
| 69 |
67 68 67
|
3jca |
|
| 70 |
69
|
3ad2ant2 |
|
| 71 |
|
ppncan |
|
| 72 |
71
|
oveq2d |
|
| 73 |
70 72
|
syl |
|
| 74 |
|
simp1 |
|
| 75 |
67 67
|
jca |
|
| 76 |
75
|
3ad2ant2 |
|
| 77 |
|
add4 |
|
| 78 |
74 76 77
|
syl2anc |
|
| 79 |
|
addcl |
|
| 80 |
79
|
ad2ant2r |
|
| 81 |
|
addcl |
|
| 82 |
81
|
ad2ant2lr |
|
| 83 |
80 82
|
jca |
|
| 84 |
83
|
3adant3 |
|
| 85 |
|
addcom |
|
| 86 |
84 85
|
syl |
|
| 87 |
73 78 86
|
3eqtrd |
|
| 88 |
64 66 87
|
3eqtr3rd |
|
| 89 |
|
picn |
|
| 90 |
|
addcom |
|
| 91 |
89 28 90
|
sylancr |
|
| 92 |
91
|
3adant3 |
|
| 93 |
88 92
|
eqtrd |
|
| 94 |
93
|
fveq2d |
|
| 95 |
|
cosppi |
|
| 96 |
28 95
|
syl |
|
| 97 |
96
|
3adant3 |
|
| 98 |
94 97
|
eqtrd |
|
| 99 |
59 98
|
oveq12d |
|
| 100 |
|
subcl |
|
| 101 |
100
|
ancoms |
|
| 102 |
101
|
adantr |
|
| 103 |
102
|
coscld |
|
| 104 |
103 29
|
subnegd |
|
| 105 |
104
|
3adant3 |
|
| 106 |
99 105
|
eqtrd |
|
| 107 |
106
|
oveq1d |
|
| 108 |
|
sinmul |
|
| 109 |
82 80 108
|
syl2anc |
|
| 110 |
109
|
3adant3 |
|
| 111 |
|
cosneg |
|
| 112 |
36 111
|
syl |
|
| 113 |
|
negsubdi2 |
|
| 114 |
113
|
fveq2d |
|
| 115 |
112 114
|
eqtr3d |
|
| 116 |
115
|
3ad2ant1 |
|
| 117 |
116
|
oveq1d |
|
| 118 |
117
|
oveq1d |
|
| 119 |
107 110 118
|
3eqtr4d |
|
| 120 |
48 53 119
|
3eqtr4d |
|