Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|
2 |
1
|
3ad2ant2 |
|
3 |
2
|
coscld |
|
4 |
3
|
negnegd |
|
5 |
|
addid2 |
|
6 |
5
|
oveq1d |
|
7 |
2 6
|
syl |
|
8 |
|
0cnd |
|
9 |
|
addcl |
|
10 |
9
|
adantr |
|
11 |
10
|
3adant3 |
|
12 |
8 11 2
|
pnpcan2d |
|
13 |
|
simp3 |
|
14 |
13
|
oveq2d |
|
15 |
7 12 14
|
3eqtr3rd |
|
16 |
|
df-neg |
|
17 |
15 16
|
eqtr4di |
|
18 |
17
|
fveq2d |
|
19 |
|
cosmpi |
|
20 |
2 19
|
syl |
|
21 |
|
cosneg |
|
22 |
11 21
|
syl |
|
23 |
18 20 22
|
3eqtr3d |
|
24 |
23
|
negeqd |
|
25 |
4 24
|
eqtr3d |
|
26 |
25
|
oveq2d |
|
27 |
|
subcl |
|
28 |
27
|
adantl |
|
29 |
28
|
coscld |
|
30 |
29
|
3adant3 |
|
31 |
11
|
coscld |
|
32 |
30 31
|
subnegd |
|
33 |
26 32
|
eqtrd |
|
34 |
33
|
oveq1d |
|
35 |
34
|
oveq2d |
|
36 |
|
subcl |
|
37 |
36
|
3ad2ant1 |
|
38 |
37
|
coscld |
|
39 |
38 31
|
subcld |
|
40 |
30 31
|
addcld |
|
41 |
|
2cnne0 |
|
42 |
41
|
a1i |
|
43 |
|
divdir |
|
44 |
39 40 42 43
|
syl3anc |
|
45 |
38 31 30
|
nppcan3d |
|
46 |
45
|
oveq1d |
|
47 |
44 46
|
eqtr3d |
|
48 |
35 47
|
eqtrd |
|
49 |
|
sinmul |
|
50 |
49
|
3ad2ant1 |
|
51 |
|
sinmul |
|
52 |
51
|
3ad2ant2 |
|
53 |
50 52
|
oveq12d |
|
54 |
|
simplr |
|
55 |
|
simpll |
|
56 |
|
simprl |
|
57 |
54 55 56
|
pnpcan2d |
|
58 |
57
|
fveq2d |
|
59 |
58
|
3adant3 |
|
60 |
1
|
adantl |
|
61 |
10 60 28
|
3jca |
|
62 |
61
|
3adant3 |
|
63 |
|
addass |
|
64 |
62 63
|
syl |
|
65 |
|
oveq1 |
|
66 |
65
|
3ad2ant3 |
|
67 |
|
simpl |
|
68 |
|
simpr |
|
69 |
67 68 67
|
3jca |
|
70 |
69
|
3ad2ant2 |
|
71 |
|
ppncan |
|
72 |
71
|
oveq2d |
|
73 |
70 72
|
syl |
|
74 |
|
simp1 |
|
75 |
67 67
|
jca |
|
76 |
75
|
3ad2ant2 |
|
77 |
|
add4 |
|
78 |
74 76 77
|
syl2anc |
|
79 |
|
addcl |
|
80 |
79
|
ad2ant2r |
|
81 |
|
addcl |
|
82 |
81
|
ad2ant2lr |
|
83 |
80 82
|
jca |
|
84 |
83
|
3adant3 |
|
85 |
|
addcom |
|
86 |
84 85
|
syl |
|
87 |
73 78 86
|
3eqtrd |
|
88 |
64 66 87
|
3eqtr3rd |
|
89 |
|
picn |
|
90 |
|
addcom |
|
91 |
89 28 90
|
sylancr |
|
92 |
91
|
3adant3 |
|
93 |
88 92
|
eqtrd |
|
94 |
93
|
fveq2d |
|
95 |
|
cosppi |
|
96 |
28 95
|
syl |
|
97 |
96
|
3adant3 |
|
98 |
94 97
|
eqtrd |
|
99 |
59 98
|
oveq12d |
|
100 |
|
subcl |
|
101 |
100
|
ancoms |
|
102 |
101
|
adantr |
|
103 |
102
|
coscld |
|
104 |
103 29
|
subnegd |
|
105 |
104
|
3adant3 |
|
106 |
99 105
|
eqtrd |
|
107 |
106
|
oveq1d |
|
108 |
|
sinmul |
|
109 |
82 80 108
|
syl2anc |
|
110 |
109
|
3adant3 |
|
111 |
|
cosneg |
|
112 |
36 111
|
syl |
|
113 |
|
negsubdi2 |
|
114 |
113
|
fveq2d |
|
115 |
112 114
|
eqtr3d |
|
116 |
115
|
3ad2ant1 |
|
117 |
116
|
oveq1d |
|
118 |
117
|
oveq1d |
|
119 |
107 110 118
|
3eqtr4d |
|
120 |
48 53 119
|
3eqtr4d |
|