| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptpjcn.1 |
|
| 2 |
|
ptpjcn.2 |
|
| 3 |
2
|
ptuni |
|
| 4 |
3
|
3adant3 |
|
| 5 |
1 4
|
eqtr4id |
|
| 6 |
5
|
mpteq1d |
|
| 7 |
|
pttop |
|
| 8 |
7
|
3adant3 |
|
| 9 |
2 8
|
eqeltrid |
|
| 10 |
|
ffvelcdm |
|
| 11 |
10
|
3adant1 |
|
| 12 |
|
vex |
|
| 13 |
12
|
elixp |
|
| 14 |
13
|
simprbi |
|
| 15 |
|
fveq2 |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
unieqd |
|
| 18 |
15 17
|
eleq12d |
|
| 19 |
18
|
rspcva |
|
| 20 |
14 19
|
sylan2 |
|
| 21 |
20
|
3ad2antl3 |
|
| 22 |
21
|
fmpttd |
|
| 23 |
5
|
feq2d |
|
| 24 |
22 23
|
mpbird |
|
| 25 |
|
eqid |
|
| 26 |
25
|
ptbas |
|
| 27 |
|
bastg |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
ffn |
|
| 30 |
25
|
ptval |
|
| 31 |
2 30
|
eqtrid |
|
| 32 |
29 31
|
sylan2 |
|
| 33 |
28 32
|
sseqtrrd |
|
| 34 |
33
|
adantr |
|
| 35 |
|
eqid |
|
| 36 |
25 35
|
ptpjpre2 |
|
| 37 |
34 36
|
sseldd |
|
| 38 |
37
|
expr |
|
| 39 |
38
|
ralrimiv |
|
| 40 |
39
|
3impa |
|
| 41 |
24 40
|
jca |
|
| 42 |
|
eqid |
|
| 43 |
1 42
|
iscn2 |
|
| 44 |
9 11 41 43
|
syl21anbrc |
|
| 45 |
6 44
|
eqeltrd |
|