Metamath Proof Explorer


Theorem ptpjpre1

Description: The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015)

Ref Expression
Hypothesis ptpjpre1.1 X = k A F k
Assertion ptpjpre1 A V F : A Top I A U F I w X w I -1 U = k A if k = I U F k

Proof

Step Hyp Ref Expression
1 ptpjpre1.1 X = k A F k
2 fveq2 k = I w k = w I
3 fveq2 k = I F k = F I
4 3 unieqd k = I F k = F I
5 2 4 eleq12d k = I w k F k w I F I
6 vex w V
7 6 elixp w k A F k w Fn A k A w k F k
8 7 simprbi w k A F k k A w k F k
9 8 1 eleq2s w X k A w k F k
10 9 adantl A V F : A Top I A U F I w X k A w k F k
11 simplrl A V F : A Top I A U F I w X I A
12 5 10 11 rspcdva A V F : A Top I A U F I w X w I F I
13 12 fmpttd A V F : A Top I A U F I w X w I : X F I
14 ffn w X w I : X F I w X w I Fn X
15 elpreima w X w I Fn X z w X w I -1 U z X w X w I z U
16 13 14 15 3syl A V F : A Top I A U F I z w X w I -1 U z X w X w I z U
17 fveq1 w = z w I = z I
18 eqid w X w I = w X w I
19 fvex z I V
20 17 18 19 fvmpt z X w X w I z = z I
21 20 eleq1d z X w X w I z U z I U
22 21 pm5.32i z X w X w I z U z X z I U
23 1 eleq2i z X z k A F k
24 vex z V
25 24 elixp z k A F k z Fn A k A z k F k
26 23 25 bitri z X z Fn A k A z k F k
27 26 anbi1i z X z I U z Fn A k A z k F k z I U
28 anass z Fn A k A z k F k z I U z Fn A k A z k F k z I U
29 27 28 bitri z X z I U z Fn A k A z k F k z I U
30 22 29 bitri z X w X w I z U z Fn A k A z k F k z I U
31 simprl A V F : A Top I A U F I z I U z k F k z I U
32 fveq2 k = I z k = z I
33 iftrue k = I if k = I U F k = U
34 32 33 eleq12d k = I z k if k = I U F k z I U
35 31 34 syl5ibrcom A V F : A Top I A U F I z I U z k F k k = I z k if k = I U F k
36 simprr A V F : A Top I A U F I z I U z k F k z k F k
37 iffalse ¬ k = I if k = I U F k = F k
38 37 eleq2d ¬ k = I z k if k = I U F k z k F k
39 36 38 syl5ibrcom A V F : A Top I A U F I z I U z k F k ¬ k = I z k if k = I U F k
40 35 39 pm2.61d A V F : A Top I A U F I z I U z k F k z k if k = I U F k
41 40 expr A V F : A Top I A U F I z I U z k F k z k if k = I U F k
42 41 ralimdv A V F : A Top I A U F I z I U k A z k F k k A z k if k = I U F k
43 42 expimpd A V F : A Top I A U F I z I U k A z k F k k A z k if k = I U F k
44 43 ancomsd A V F : A Top I A U F I k A z k F k z I U k A z k if k = I U F k
45 elssuni U F I U F I
46 45 ad2antll A V F : A Top I A U F I U F I
47 33 4 sseq12d k = I if k = I U F k F k U F I
48 46 47 syl5ibrcom A V F : A Top I A U F I k = I if k = I U F k F k
49 ssid F k F k
50 37 49 eqsstrdi ¬ k = I if k = I U F k F k
51 48 50 pm2.61d1 A V F : A Top I A U F I if k = I U F k F k
52 51 sseld A V F : A Top I A U F I z k if k = I U F k z k F k
53 52 ralimdv A V F : A Top I A U F I k A z k if k = I U F k k A z k F k
54 34 rspcv I A k A z k if k = I U F k z I U
55 54 ad2antrl A V F : A Top I A U F I k A z k if k = I U F k z I U
56 53 55 jcad A V F : A Top I A U F I k A z k if k = I U F k k A z k F k z I U
57 44 56 impbid A V F : A Top I A U F I k A z k F k z I U k A z k if k = I U F k
58 57 anbi2d A V F : A Top I A U F I z Fn A k A z k F k z I U z Fn A k A z k if k = I U F k
59 30 58 syl5bb A V F : A Top I A U F I z X w X w I z U z Fn A k A z k if k = I U F k
60 16 59 bitrd A V F : A Top I A U F I z w X w I -1 U z Fn A k A z k if k = I U F k
61 24 elixp z k A if k = I U F k z Fn A k A z k if k = I U F k
62 60 61 bitr4di A V F : A Top I A U F I z w X w I -1 U z k A if k = I U F k
63 62 eqrdv A V F : A Top I A U F I w X w I -1 U = k A if k = I U F k