Metamath Proof Explorer


Theorem ptpjpre2

Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
ptbasfi.2 X = n A F n
Assertion ptpjpre2 A V F : A Top I A U F I w X w I -1 U B

Proof

Step Hyp Ref Expression
1 ptbas.1 B = x | g g Fn A y A g y F y z Fin y A z g y = F y x = y A g y
2 ptbasfi.2 X = n A F n
3 2 ptpjpre1 A V F : A Top I A U F I w X w I -1 U = n A if n = I U F n
4 simpll A V F : A Top I A U F I A V
5 snfi I Fin
6 5 a1i A V F : A Top I A U F I I Fin
7 simprr A V F : A Top I A U F I U F I
8 7 ad2antrr A V F : A Top I A U F I n A n = I U F I
9 simpr A V F : A Top I A U F I n A n = I n = I
10 9 fveq2d A V F : A Top I A U F I n A n = I F n = F I
11 8 10 eleqtrrd A V F : A Top I A U F I n A n = I U F n
12 simplr A V F : A Top I A U F I F : A Top
13 12 ffvelrnda A V F : A Top I A U F I n A F n Top
14 eqid F n = F n
15 14 topopn F n Top F n F n
16 13 15 syl A V F : A Top I A U F I n A F n F n
17 16 adantr A V F : A Top I A U F I n A ¬ n = I F n F n
18 11 17 ifclda A V F : A Top I A U F I n A if n = I U F n F n
19 eldifsni n A I n I
20 19 neneqd n A I ¬ n = I
21 20 adantl A V F : A Top I A U F I n A I ¬ n = I
22 21 iffalsed A V F : A Top I A U F I n A I if n = I U F n = F n
23 1 4 6 18 22 elptr2 A V F : A Top I A U F I n A if n = I U F n B
24 3 23 eqeltrd A V F : A Top I A U F I w X w I -1 U B