| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptrescn.1 |  | 
						
							| 2 |  | ptrescn.2 |  | 
						
							| 3 |  | ptrescn.3 |  | 
						
							| 4 |  | simpl3 |  | 
						
							| 5 | 2 | ptuni |  | 
						
							| 6 | 5 | 3adant3 |  | 
						
							| 7 | 6 1 | eqtr4di |  | 
						
							| 8 | 7 | eleq2d |  | 
						
							| 9 | 8 | biimpar |  | 
						
							| 10 |  | resixp |  | 
						
							| 11 | 4 9 10 | syl2anc |  | 
						
							| 12 |  | ixpeq2 |  | 
						
							| 13 |  | fvres |  | 
						
							| 14 | 13 | unieqd |  | 
						
							| 15 | 12 14 | mprg |  | 
						
							| 16 |  | ssexg |  | 
						
							| 17 | 16 | ancoms |  | 
						
							| 18 | 17 | 3adant2 |  | 
						
							| 19 |  | fssres |  | 
						
							| 20 | 19 | 3adant1 |  | 
						
							| 21 | 3 | ptuni |  | 
						
							| 22 | 18 20 21 | syl2anc |  | 
						
							| 23 | 15 22 | eqtr3id |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 11 24 | eleqtrd |  | 
						
							| 26 | 25 | fmpttd |  | 
						
							| 27 |  | fimacnv |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 |  | pttop |  | 
						
							| 30 | 2 29 | eqeltrid |  | 
						
							| 31 | 30 | 3adant3 |  | 
						
							| 32 | 1 | topopn |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 28 33 | eqeltrd |  | 
						
							| 35 |  | elsni |  | 
						
							| 36 | 35 | imaeq2d |  | 
						
							| 37 | 36 | eleq1d |  | 
						
							| 38 | 34 37 | syl5ibrcom |  | 
						
							| 39 | 38 | ralrimiv |  | 
						
							| 40 |  | imaco |  | 
						
							| 41 |  | cnvco |  | 
						
							| 42 | 25 | adantlr |  | 
						
							| 43 |  | eqidd |  | 
						
							| 44 |  | eqidd |  | 
						
							| 45 |  | fveq1 |  | 
						
							| 46 | 42 43 44 45 | fmptco |  | 
						
							| 47 |  | fvres |  | 
						
							| 48 | 47 | ad2antrl |  | 
						
							| 49 | 48 | mpteq2dv |  | 
						
							| 50 | 46 49 | eqtrd |  | 
						
							| 51 | 50 | cnveqd |  | 
						
							| 52 | 41 51 | eqtr3id |  | 
						
							| 53 | 52 | imaeq1d |  | 
						
							| 54 | 40 53 | eqtr3id |  | 
						
							| 55 |  | simpl1 |  | 
						
							| 56 |  | simpl2 |  | 
						
							| 57 |  | simpl3 |  | 
						
							| 58 |  | simprl |  | 
						
							| 59 | 57 58 | sseldd |  | 
						
							| 60 | 1 2 | ptpjcn |  | 
						
							| 61 | 55 56 59 60 | syl3anc |  | 
						
							| 62 |  | simprr |  | 
						
							| 63 |  | cnima |  | 
						
							| 64 | 61 62 63 | syl2anc |  | 
						
							| 65 | 54 64 | eqeltrd |  | 
						
							| 66 |  | imaeq2 |  | 
						
							| 67 | 66 | eleq1d |  | 
						
							| 68 | 65 67 | syl5ibrcom |  | 
						
							| 69 | 68 | rexlimdvva |  | 
						
							| 70 | 69 | alrimiv |  | 
						
							| 71 |  | eqid |  | 
						
							| 72 | 71 | rnmpo |  | 
						
							| 73 | 72 | raleqi |  | 
						
							| 74 | 13 | rexeqdv |  | 
						
							| 75 |  | eqeq1 |  | 
						
							| 76 | 75 | rexbidv |  | 
						
							| 77 | 74 76 | sylan9bbr |  | 
						
							| 78 | 77 | rexbidva |  | 
						
							| 79 | 78 | ralab |  | 
						
							| 80 | 73 79 | bitri |  | 
						
							| 81 | 70 80 | sylibr |  | 
						
							| 82 |  | ralunb |  | 
						
							| 83 | 39 81 82 | sylanbrc |  | 
						
							| 84 | 1 | toptopon |  | 
						
							| 85 | 31 84 | sylib |  | 
						
							| 86 |  | snex |  | 
						
							| 87 |  | fvex |  | 
						
							| 88 | 87 | abrexex |  | 
						
							| 89 | 88 | rgenw |  | 
						
							| 90 |  | abrexex2g |  | 
						
							| 91 | 18 89 90 | sylancl |  | 
						
							| 92 | 72 91 | eqeltrid |  | 
						
							| 93 |  | unexg |  | 
						
							| 94 | 86 92 93 | sylancr |  | 
						
							| 95 |  | eqid |  | 
						
							| 96 | 3 95 71 | ptval2 |  | 
						
							| 97 | 18 20 96 | syl2anc |  | 
						
							| 98 |  | pttop |  | 
						
							| 99 | 18 20 98 | syl2anc |  | 
						
							| 100 | 3 99 | eqeltrid |  | 
						
							| 101 | 95 | toptopon |  | 
						
							| 102 | 100 101 | sylib |  | 
						
							| 103 | 85 94 97 102 | subbascn |  | 
						
							| 104 | 26 83 103 | mpbir2and |  |