Metamath Proof Explorer


Theorem ptrescn

Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015)

Ref Expression
Hypotheses ptrescn.1 X = J
ptrescn.2 J = 𝑡 F
ptrescn.3 K = 𝑡 F B
Assertion ptrescn A V F : A Top B A x X x B J Cn K

Proof

Step Hyp Ref Expression
1 ptrescn.1 X = J
2 ptrescn.2 J = 𝑡 F
3 ptrescn.3 K = 𝑡 F B
4 simpl3 A V F : A Top B A x X B A
5 2 ptuni A V F : A Top k A F k = J
6 5 3adant3 A V F : A Top B A k A F k = J
7 6 1 eqtr4di A V F : A Top B A k A F k = X
8 7 eleq2d A V F : A Top B A x k A F k x X
9 8 biimpar A V F : A Top B A x X x k A F k
10 resixp B A x k A F k x B k B F k
11 4 9 10 syl2anc A V F : A Top B A x X x B k B F k
12 ixpeq2 k B F B k = F k k B F B k = k B F k
13 fvres k B F B k = F k
14 13 unieqd k B F B k = F k
15 12 14 mprg k B F B k = k B F k
16 ssexg B A A V B V
17 16 ancoms A V B A B V
18 17 3adant2 A V F : A Top B A B V
19 fssres F : A Top B A F B : B Top
20 19 3adant1 A V F : A Top B A F B : B Top
21 3 ptuni B V F B : B Top k B F B k = K
22 18 20 21 syl2anc A V F : A Top B A k B F B k = K
23 15 22 eqtr3id A V F : A Top B A k B F k = K
24 23 adantr A V F : A Top B A x X k B F k = K
25 11 24 eleqtrd A V F : A Top B A x X x B K
26 25 fmpttd A V F : A Top B A x X x B : X K
27 fimacnv x X x B : X K x X x B -1 K = X
28 26 27 syl A V F : A Top B A x X x B -1 K = X
29 pttop A V F : A Top 𝑡 F Top
30 2 29 eqeltrid A V F : A Top J Top
31 30 3adant3 A V F : A Top B A J Top
32 1 topopn J Top X J
33 31 32 syl A V F : A Top B A X J
34 28 33 eqeltrd A V F : A Top B A x X x B -1 K J
35 elsni v K v = K
36 35 imaeq2d v K x X x B -1 v = x X x B -1 K
37 36 eleq1d v K x X x B -1 v J x X x B -1 K J
38 34 37 syl5ibrcom A V F : A Top B A v K x X x B -1 v J
39 38 ralrimiv A V F : A Top B A v K x X x B -1 v J
40 imaco x X x B -1 z K z k -1 u = x X x B -1 z K z k -1 u
41 cnvco z K z k x X x B -1 = x X x B -1 z K z k -1
42 25 adantlr A V F : A Top B A k B u F k x X x B K
43 eqidd A V F : A Top B A k B u F k x X x B = x X x B
44 eqidd A V F : A Top B A k B u F k z K z k = z K z k
45 fveq1 z = x B z k = x B k
46 42 43 44 45 fmptco A V F : A Top B A k B u F k z K z k x X x B = x X x B k
47 fvres k B x B k = x k
48 47 ad2antrl A V F : A Top B A k B u F k x B k = x k
49 48 mpteq2dv A V F : A Top B A k B u F k x X x B k = x X x k
50 46 49 eqtrd A V F : A Top B A k B u F k z K z k x X x B = x X x k
51 50 cnveqd A V F : A Top B A k B u F k z K z k x X x B -1 = x X x k -1
52 41 51 eqtr3id A V F : A Top B A k B u F k x X x B -1 z K z k -1 = x X x k -1
53 52 imaeq1d A V F : A Top B A k B u F k x X x B -1 z K z k -1 u = x X x k -1 u
54 40 53 eqtr3id A V F : A Top B A k B u F k x X x B -1 z K z k -1 u = x X x k -1 u
55 simpl1 A V F : A Top B A k B u F k A V
56 simpl2 A V F : A Top B A k B u F k F : A Top
57 simpl3 A V F : A Top B A k B u F k B A
58 simprl A V F : A Top B A k B u F k k B
59 57 58 sseldd A V F : A Top B A k B u F k k A
60 1 2 ptpjcn A V F : A Top k A x X x k J Cn F k
61 55 56 59 60 syl3anc A V F : A Top B A k B u F k x X x k J Cn F k
62 simprr A V F : A Top B A k B u F k u F k
63 cnima x X x k J Cn F k u F k x X x k -1 u J
64 61 62 63 syl2anc A V F : A Top B A k B u F k x X x k -1 u J
65 54 64 eqeltrd A V F : A Top B A k B u F k x X x B -1 z K z k -1 u J
66 imaeq2 v = z K z k -1 u x X x B -1 v = x X x B -1 z K z k -1 u
67 66 eleq1d v = z K z k -1 u x X x B -1 v J x X x B -1 z K z k -1 u J
68 65 67 syl5ibrcom A V F : A Top B A k B u F k v = z K z k -1 u x X x B -1 v J
69 68 rexlimdvva A V F : A Top B A k B u F k v = z K z k -1 u x X x B -1 v J
70 69 alrimiv A V F : A Top B A v k B u F k v = z K z k -1 u x X x B -1 v J
71 eqid k B , u F B k z K z k -1 u = k B , u F B k z K z k -1 u
72 71 rnmpo ran k B , u F B k z K z k -1 u = y | k B u F B k y = z K z k -1 u
73 72 raleqi v ran k B , u F B k z K z k -1 u x X x B -1 v J v y | k B u F B k y = z K z k -1 u x X x B -1 v J
74 13 rexeqdv k B u F B k y = z K z k -1 u u F k y = z K z k -1 u
75 eqeq1 y = v y = z K z k -1 u v = z K z k -1 u
76 75 rexbidv y = v u F k y = z K z k -1 u u F k v = z K z k -1 u
77 74 76 sylan9bbr y = v k B u F B k y = z K z k -1 u u F k v = z K z k -1 u
78 77 rexbidva y = v k B u F B k y = z K z k -1 u k B u F k v = z K z k -1 u
79 78 ralab v y | k B u F B k y = z K z k -1 u x X x B -1 v J v k B u F k v = z K z k -1 u x X x B -1 v J
80 73 79 bitri v ran k B , u F B k z K z k -1 u x X x B -1 v J v k B u F k v = z K z k -1 u x X x B -1 v J
81 70 80 sylibr A V F : A Top B A v ran k B , u F B k z K z k -1 u x X x B -1 v J
82 ralunb v K ran k B , u F B k z K z k -1 u x X x B -1 v J v K x X x B -1 v J v ran k B , u F B k z K z k -1 u x X x B -1 v J
83 39 81 82 sylanbrc A V F : A Top B A v K ran k B , u F B k z K z k -1 u x X x B -1 v J
84 1 toptopon J Top J TopOn X
85 31 84 sylib A V F : A Top B A J TopOn X
86 snex K V
87 fvex F B k V
88 87 abrexex y | u F B k y = z K z k -1 u V
89 88 rgenw k B y | u F B k y = z K z k -1 u V
90 abrexex2g B V k B y | u F B k y = z K z k -1 u V y | k B u F B k y = z K z k -1 u V
91 18 89 90 sylancl A V F : A Top B A y | k B u F B k y = z K z k -1 u V
92 72 91 eqeltrid A V F : A Top B A ran k B , u F B k z K z k -1 u V
93 unexg K V ran k B , u F B k z K z k -1 u V K ran k B , u F B k z K z k -1 u V
94 86 92 93 sylancr A V F : A Top B A K ran k B , u F B k z K z k -1 u V
95 eqid K = K
96 3 95 71 ptval2 B V F B : B Top K = topGen fi K ran k B , u F B k z K z k -1 u
97 18 20 96 syl2anc A V F : A Top B A K = topGen fi K ran k B , u F B k z K z k -1 u
98 pttop B V F B : B Top 𝑡 F B Top
99 18 20 98 syl2anc A V F : A Top B A 𝑡 F B Top
100 3 99 eqeltrid A V F : A Top B A K Top
101 95 toptopon K Top K TopOn K
102 100 101 sylib A V F : A Top B A K TopOn K
103 85 94 97 102 subbascn A V F : A Top B A x X x B J Cn K x X x B : X K v K ran k B , u F B k z K z k -1 u x X x B -1 v J
104 26 83 103 mpbir2and A V F : A Top B A x X x B J Cn K