Step |
Hyp |
Ref |
Expression |
1 |
|
ptrescn.1 |
|
2 |
|
ptrescn.2 |
|
3 |
|
ptrescn.3 |
|
4 |
|
simpl3 |
|
5 |
2
|
ptuni |
|
6 |
5
|
3adant3 |
|
7 |
6 1
|
eqtr4di |
|
8 |
7
|
eleq2d |
|
9 |
8
|
biimpar |
|
10 |
|
resixp |
|
11 |
4 9 10
|
syl2anc |
|
12 |
|
ixpeq2 |
|
13 |
|
fvres |
|
14 |
13
|
unieqd |
|
15 |
12 14
|
mprg |
|
16 |
|
ssexg |
|
17 |
16
|
ancoms |
|
18 |
17
|
3adant2 |
|
19 |
|
fssres |
|
20 |
19
|
3adant1 |
|
21 |
3
|
ptuni |
|
22 |
18 20 21
|
syl2anc |
|
23 |
15 22
|
eqtr3id |
|
24 |
23
|
adantr |
|
25 |
11 24
|
eleqtrd |
|
26 |
25
|
fmpttd |
|
27 |
|
fimacnv |
|
28 |
26 27
|
syl |
|
29 |
|
pttop |
|
30 |
2 29
|
eqeltrid |
|
31 |
30
|
3adant3 |
|
32 |
1
|
topopn |
|
33 |
31 32
|
syl |
|
34 |
28 33
|
eqeltrd |
|
35 |
|
elsni |
|
36 |
35
|
imaeq2d |
|
37 |
36
|
eleq1d |
|
38 |
34 37
|
syl5ibrcom |
|
39 |
38
|
ralrimiv |
|
40 |
|
imaco |
|
41 |
|
cnvco |
|
42 |
25
|
adantlr |
|
43 |
|
eqidd |
|
44 |
|
eqidd |
|
45 |
|
fveq1 |
|
46 |
42 43 44 45
|
fmptco |
|
47 |
|
fvres |
|
48 |
47
|
ad2antrl |
|
49 |
48
|
mpteq2dv |
|
50 |
46 49
|
eqtrd |
|
51 |
50
|
cnveqd |
|
52 |
41 51
|
eqtr3id |
|
53 |
52
|
imaeq1d |
|
54 |
40 53
|
eqtr3id |
|
55 |
|
simpl1 |
|
56 |
|
simpl2 |
|
57 |
|
simpl3 |
|
58 |
|
simprl |
|
59 |
57 58
|
sseldd |
|
60 |
1 2
|
ptpjcn |
|
61 |
55 56 59 60
|
syl3anc |
|
62 |
|
simprr |
|
63 |
|
cnima |
|
64 |
61 62 63
|
syl2anc |
|
65 |
54 64
|
eqeltrd |
|
66 |
|
imaeq2 |
|
67 |
66
|
eleq1d |
|
68 |
65 67
|
syl5ibrcom |
|
69 |
68
|
rexlimdvva |
|
70 |
69
|
alrimiv |
|
71 |
|
eqid |
|
72 |
71
|
rnmpo |
|
73 |
72
|
raleqi |
|
74 |
13
|
rexeqdv |
|
75 |
|
eqeq1 |
|
76 |
75
|
rexbidv |
|
77 |
74 76
|
sylan9bbr |
|
78 |
77
|
rexbidva |
|
79 |
78
|
ralab |
|
80 |
73 79
|
bitri |
|
81 |
70 80
|
sylibr |
|
82 |
|
ralunb |
|
83 |
39 81 82
|
sylanbrc |
|
84 |
1
|
toptopon |
|
85 |
31 84
|
sylib |
|
86 |
|
snex |
|
87 |
|
fvex |
|
88 |
87
|
abrexex |
|
89 |
88
|
rgenw |
|
90 |
|
abrexex2g |
|
91 |
18 89 90
|
sylancl |
|
92 |
72 91
|
eqeltrid |
|
93 |
|
unexg |
|
94 |
86 92 93
|
sylancr |
|
95 |
|
eqid |
|
96 |
3 95 71
|
ptval2 |
|
97 |
18 20 96
|
syl2anc |
|
98 |
|
pttop |
|
99 |
18 20 98
|
syl2anc |
|
100 |
3 99
|
eqeltrid |
|
101 |
95
|
toptopon |
|
102 |
100 101
|
sylib |
|
103 |
85 94 97 102
|
subbascn |
|
104 |
26 83 103
|
mpbir2and |
|