Metamath Proof Explorer


Theorem pttopon

Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis ptunimpt.j J = 𝑡 x A K
Assertion pttopon A V x A K TopOn B J TopOn x A B

Proof

Step Hyp Ref Expression
1 ptunimpt.j J = 𝑡 x A K
2 topontop K TopOn B K Top
3 2 ralimi x A K TopOn B x A K Top
4 eqid x A K = x A K
5 4 fmpt x A K Top x A K : A Top
6 3 5 sylib x A K TopOn B x A K : A Top
7 pttop A V x A K : A Top 𝑡 x A K Top
8 1 7 eqeltrid A V x A K : A Top J Top
9 6 8 sylan2 A V x A K TopOn B J Top
10 toponuni K TopOn B B = K
11 10 ralimi x A K TopOn B x A B = K
12 ixpeq2 x A B = K x A B = x A K
13 11 12 syl x A K TopOn B x A B = x A K
14 13 adantl A V x A K TopOn B x A B = x A K
15 1 ptunimpt A V x A K Top x A K = J
16 3 15 sylan2 A V x A K TopOn B x A K = J
17 14 16 eqtrd A V x A K TopOn B x A B = J
18 istopon J TopOn x A B J Top x A B = J
19 9 17 18 sylanbrc A V x A K TopOn B J TopOn x A B