Metamath Proof Explorer


Theorem pttoponconst

Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis ptuniconst.2 J = 𝑡 A × R
Assertion pttoponconst A V R TopOn X J TopOn X A

Proof

Step Hyp Ref Expression
1 ptuniconst.2 J = 𝑡 A × R
2 id R TopOn X R TopOn X
3 2 ralrimivw R TopOn X x A R TopOn X
4 fconstmpt A × R = x A R
5 4 fveq2i 𝑡 A × R = 𝑡 x A R
6 1 5 eqtri J = 𝑡 x A R
7 6 pttopon A V x A R TopOn X J TopOn x A X
8 3 7 sylan2 A V R TopOn X J TopOn x A X
9 toponmax R TopOn X X R
10 ixpconstg A V X R x A X = X A
11 9 10 sylan2 A V R TopOn X x A X = X A
12 11 fveq2d A V R TopOn X TopOn x A X = TopOn X A
13 8 12 eleqtrd A V R TopOn X J TopOn X A