Metamath Proof Explorer


Theorem ptuniconst

Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptuniconst.2 J = 𝑡 A × R
ptuniconst.1 X = R
Assertion ptuniconst A V R Top X A = J

Proof

Step Hyp Ref Expression
1 ptuniconst.2 J = 𝑡 A × R
2 ptuniconst.1 X = R
3 2 toptopon R Top R TopOn X
4 1 pttoponconst A V R TopOn X J TopOn X A
5 3 4 sylan2b A V R Top J TopOn X A
6 toponuni J TopOn X A X A = J
7 5 6 syl A V R Top X A = J