Metamath Proof Explorer


Theorem ptunimpt

Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypothesis ptunimpt.j J = 𝑡 x A K
Assertion ptunimpt A V x A K Top x A K = J

Proof

Step Hyp Ref Expression
1 ptunimpt.j J = 𝑡 x A K
2 eqid x A K = x A K
3 2 fvmpt2 x A K Top x A K x = K
4 3 eqcomd x A K Top K = x A K x
5 4 unieqd x A K Top K = x A K x
6 5 ralimiaa x A K Top x A K = x A K x
7 6 adantl A V x A K Top x A K = x A K x
8 ixpeq2 x A K = x A K x x A K = x A x A K x
9 7 8 syl A V x A K Top x A K = x A x A K x
10 nffvmpt1 _ x x A K y
11 10 nfuni _ x x A K y
12 nfcv _ y x A K x
13 fveq2 y = x x A K y = x A K x
14 13 unieqd y = x x A K y = x A K x
15 11 12 14 cbvixp y A x A K y = x A x A K x
16 9 15 eqtr4di A V x A K Top x A K = y A x A K y
17 2 fmpt x A K Top x A K : A Top
18 1 ptuni A V x A K : A Top y A x A K y = J
19 17 18 sylan2b A V x A K Top y A x A K y = J
20 16 19 eqtrd A V x A K Top x A K = J