Metamath Proof Explorer


Theorem pw2eng

Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2o . (Contributed by FL, 22-Feb-2011) (Revised by Mario Carneiro, 1-Jul-2015)

Ref Expression
Assertion pw2eng A V 𝒫 A 2 𝑜 A

Proof

Step Hyp Ref Expression
1 pwexg A V 𝒫 A V
2 ovexd A V A V
3 id A V A V
4 0ex V
5 4 a1i A V V
6 p0ex V
7 6 a1i A V V
8 0nep0
9 8 a1i A V
10 eqid x 𝒫 A z A if z x = x 𝒫 A z A if z x
11 3 5 7 9 10 pw2f1o A V x 𝒫 A z A if z x : 𝒫 A 1-1 onto A
12 f1oen2g 𝒫 A V A V x 𝒫 A z A if z x : 𝒫 A 1-1 onto A 𝒫 A A
13 1 2 11 12 syl3anc A V 𝒫 A A
14 df2o2 2 𝑜 =
15 14 oveq1i 2 𝑜 A = A
16 13 15 breqtrrdi A V 𝒫 A 2 𝑜 A