Metamath Proof Explorer


Theorem pw2f1ocnv

Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en , which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Hypothesis pw2f1o2.f F = x 2 𝑜 A x -1 1 𝑜
Assertion pw2f1ocnv A V F : 2 𝑜 A 1-1 onto 𝒫 A F -1 = y 𝒫 A z A if z y 1 𝑜

Proof

Step Hyp Ref Expression
1 pw2f1o2.f F = x 2 𝑜 A x -1 1 𝑜
2 vex x V
3 2 cnvex x -1 V
4 imaexg x -1 V x -1 1 𝑜 V
5 3 4 mp1i A V x 2 𝑜 A x -1 1 𝑜 V
6 mptexg A V z A if z y 1 𝑜 V
7 6 adantr A V y 𝒫 A z A if z y 1 𝑜 V
8 2on 2 𝑜 On
9 elmapg 2 𝑜 On A V x 2 𝑜 A x : A 2 𝑜
10 8 9 mpan A V x 2 𝑜 A x : A 2 𝑜
11 10 anbi1d A V x 2 𝑜 A y = x -1 1 𝑜 x : A 2 𝑜 y = x -1 1 𝑜
12 1oex 1 𝑜 V
13 12 sucid 1 𝑜 suc 1 𝑜
14 df-2o 2 𝑜 = suc 1 𝑜
15 13 14 eleqtrri 1 𝑜 2 𝑜
16 0ex V
17 16 prid1
18 df2o2 2 𝑜 =
19 17 18 eleqtrri 2 𝑜
20 15 19 ifcli if z y 1 𝑜 2 𝑜
21 20 rgenw z A if z y 1 𝑜 2 𝑜
22 eqid z A if z y 1 𝑜 = z A if z y 1 𝑜
23 22 fmpt z A if z y 1 𝑜 2 𝑜 z A if z y 1 𝑜 : A 2 𝑜
24 21 23 mpbi z A if z y 1 𝑜 : A 2 𝑜
25 simpr y A x = z A if z y 1 𝑜 x = z A if z y 1 𝑜
26 25 feq1d y A x = z A if z y 1 𝑜 x : A 2 𝑜 z A if z y 1 𝑜 : A 2 𝑜
27 24 26 mpbiri y A x = z A if z y 1 𝑜 x : A 2 𝑜
28 iftrue w y if w y 1 𝑜 = 1 𝑜
29 noel ¬
30 iffalse ¬ w y if w y 1 𝑜 =
31 30 eqeq1d ¬ w y if w y 1 𝑜 = 1 𝑜 = 1 𝑜
32 0lt1o 1 𝑜
33 eleq2 = 1 𝑜 1 𝑜
34 32 33 mpbiri = 1 𝑜
35 31 34 syl6bi ¬ w y if w y 1 𝑜 = 1 𝑜
36 29 35 mtoi ¬ w y ¬ if w y 1 𝑜 = 1 𝑜
37 36 con4i if w y 1 𝑜 = 1 𝑜 w y
38 28 37 impbii w y if w y 1 𝑜 = 1 𝑜
39 25 fveq1d y A x = z A if z y 1 𝑜 x w = z A if z y 1 𝑜 w
40 elequ1 z = w z y w y
41 40 ifbid z = w if z y 1 𝑜 = if w y 1 𝑜
42 12 16 ifcli if w y 1 𝑜 V
43 41 22 42 fvmpt w A z A if z y 1 𝑜 w = if w y 1 𝑜
44 39 43 sylan9eq y A x = z A if z y 1 𝑜 w A x w = if w y 1 𝑜
45 44 eqeq1d y A x = z A if z y 1 𝑜 w A x w = 1 𝑜 if w y 1 𝑜 = 1 𝑜
46 38 45 bitr4id y A x = z A if z y 1 𝑜 w A w y x w = 1 𝑜
47 fvex x w V
48 47 elsn x w 1 𝑜 x w = 1 𝑜
49 46 48 bitr4di y A x = z A if z y 1 𝑜 w A w y x w 1 𝑜
50 49 pm5.32da y A x = z A if z y 1 𝑜 w A w y w A x w 1 𝑜
51 ssel y A w y w A
52 51 adantr y A x = z A if z y 1 𝑜 w y w A
53 52 pm4.71rd y A x = z A if z y 1 𝑜 w y w A w y
54 ffn x : A 2 𝑜 x Fn A
55 elpreima x Fn A w x -1 1 𝑜 w A x w 1 𝑜
56 27 54 55 3syl y A x = z A if z y 1 𝑜 w x -1 1 𝑜 w A x w 1 𝑜
57 50 53 56 3bitr4d y A x = z A if z y 1 𝑜 w y w x -1 1 𝑜
58 57 eqrdv y A x = z A if z y 1 𝑜 y = x -1 1 𝑜
59 27 58 jca y A x = z A if z y 1 𝑜 x : A 2 𝑜 y = x -1 1 𝑜
60 simpr x : A 2 𝑜 y = x -1 1 𝑜 y = x -1 1 𝑜
61 cnvimass x -1 1 𝑜 dom x
62 fdm x : A 2 𝑜 dom x = A
63 62 adantr x : A 2 𝑜 y = x -1 1 𝑜 dom x = A
64 61 63 sseqtrid x : A 2 𝑜 y = x -1 1 𝑜 x -1 1 𝑜 A
65 60 64 eqsstrd x : A 2 𝑜 y = x -1 1 𝑜 y A
66 simplr x : A 2 𝑜 y = x -1 1 𝑜 w A y = x -1 1 𝑜
67 66 eleq2d x : A 2 𝑜 y = x -1 1 𝑜 w A w y w x -1 1 𝑜
68 54 adantr x : A 2 𝑜 y = x -1 1 𝑜 x Fn A
69 fnbrfvb x Fn A w A x w = 1 𝑜 w x 1 𝑜
70 68 69 sylan x : A 2 𝑜 y = x -1 1 𝑜 w A x w = 1 𝑜 w x 1 𝑜
71 1on 1 𝑜 On
72 vex w V
73 72 eliniseg 1 𝑜 On w x -1 1 𝑜 w x 1 𝑜
74 71 73 ax-mp w x -1 1 𝑜 w x 1 𝑜
75 70 74 bitr4di x : A 2 𝑜 y = x -1 1 𝑜 w A x w = 1 𝑜 w x -1 1 𝑜
76 67 75 bitr4d x : A 2 𝑜 y = x -1 1 𝑜 w A w y x w = 1 𝑜
77 76 biimpa x : A 2 𝑜 y = x -1 1 𝑜 w A w y x w = 1 𝑜
78 28 adantl x : A 2 𝑜 y = x -1 1 𝑜 w A w y if w y 1 𝑜 = 1 𝑜
79 77 78 eqtr4d x : A 2 𝑜 y = x -1 1 𝑜 w A w y x w = if w y 1 𝑜
80 ffvelrn x : A 2 𝑜 w A x w 2 𝑜
81 80 adantlr x : A 2 𝑜 y = x -1 1 𝑜 w A x w 2 𝑜
82 df2o3 2 𝑜 = 1 𝑜
83 81 82 eleqtrdi x : A 2 𝑜 y = x -1 1 𝑜 w A x w 1 𝑜
84 47 elpr x w 1 𝑜 x w = x w = 1 𝑜
85 83 84 sylib x : A 2 𝑜 y = x -1 1 𝑜 w A x w = x w = 1 𝑜
86 85 ord x : A 2 𝑜 y = x -1 1 𝑜 w A ¬ x w = x w = 1 𝑜
87 86 76 sylibrd x : A 2 𝑜 y = x -1 1 𝑜 w A ¬ x w = w y
88 87 con1d x : A 2 𝑜 y = x -1 1 𝑜 w A ¬ w y x w =
89 88 imp x : A 2 𝑜 y = x -1 1 𝑜 w A ¬ w y x w =
90 30 adantl x : A 2 𝑜 y = x -1 1 𝑜 w A ¬ w y if w y 1 𝑜 =
91 89 90 eqtr4d x : A 2 𝑜 y = x -1 1 𝑜 w A ¬ w y x w = if w y 1 𝑜
92 79 91 pm2.61dan x : A 2 𝑜 y = x -1 1 𝑜 w A x w = if w y 1 𝑜
93 43 adantl x : A 2 𝑜 y = x -1 1 𝑜 w A z A if z y 1 𝑜 w = if w y 1 𝑜
94 92 93 eqtr4d x : A 2 𝑜 y = x -1 1 𝑜 w A x w = z A if z y 1 𝑜 w
95 94 ralrimiva x : A 2 𝑜 y = x -1 1 𝑜 w A x w = z A if z y 1 𝑜 w
96 ffn z A if z y 1 𝑜 : A 2 𝑜 z A if z y 1 𝑜 Fn A
97 24 96 ax-mp z A if z y 1 𝑜 Fn A
98 eqfnfv x Fn A z A if z y 1 𝑜 Fn A x = z A if z y 1 𝑜 w A x w = z A if z y 1 𝑜 w
99 68 97 98 sylancl x : A 2 𝑜 y = x -1 1 𝑜 x = z A if z y 1 𝑜 w A x w = z A if z y 1 𝑜 w
100 95 99 mpbird x : A 2 𝑜 y = x -1 1 𝑜 x = z A if z y 1 𝑜
101 65 100 jca x : A 2 𝑜 y = x -1 1 𝑜 y A x = z A if z y 1 𝑜
102 59 101 impbii y A x = z A if z y 1 𝑜 x : A 2 𝑜 y = x -1 1 𝑜
103 11 102 bitr4di A V x 2 𝑜 A y = x -1 1 𝑜 y A x = z A if z y 1 𝑜
104 velpw y 𝒫 A y A
105 104 anbi1i y 𝒫 A x = z A if z y 1 𝑜 y A x = z A if z y 1 𝑜
106 103 105 bitr4di A V x 2 𝑜 A y = x -1 1 𝑜 y 𝒫 A x = z A if z y 1 𝑜
107 1 5 7 106 f1ocnvd A V F : 2 𝑜 A 1-1 onto 𝒫 A F -1 = y 𝒫 A z A if z y 1 𝑜