Step |
Hyp |
Ref |
Expression |
1 |
|
pw2f1o.1 |
|
2 |
|
pw2f1o.2 |
|
3 |
|
pw2f1o.3 |
|
4 |
|
pw2f1o.4 |
|
5 |
|
prid2g |
|
6 |
3 5
|
syl |
|
7 |
|
prid1g |
|
8 |
2 7
|
syl |
|
9 |
6 8
|
ifcld |
|
10 |
9
|
adantr |
|
11 |
10
|
fmpttd |
|
12 |
11
|
adantr |
|
13 |
|
simprr |
|
14 |
13
|
feq1d |
|
15 |
12 14
|
mpbird |
|
16 |
|
iftrue |
|
17 |
4
|
ad2antrr |
|
18 |
|
iffalse |
|
19 |
18
|
neeq1d |
|
20 |
17 19
|
syl5ibrcom |
|
21 |
20
|
necon4bd |
|
22 |
16 21
|
impbid2 |
|
23 |
|
simplrr |
|
24 |
23
|
fveq1d |
|
25 |
|
id |
|
26 |
6 8
|
ifcld |
|
27 |
26
|
adantr |
|
28 |
|
eleq1w |
|
29 |
28
|
ifbid |
|
30 |
|
eqid |
|
31 |
29 30
|
fvmptg |
|
32 |
25 27 31
|
syl2anr |
|
33 |
24 32
|
eqtrd |
|
34 |
33
|
eqeq1d |
|
35 |
22 34
|
bitr4d |
|
36 |
35
|
pm5.32da |
|
37 |
|
simprl |
|
38 |
37
|
sseld |
|
39 |
38
|
pm4.71rd |
|
40 |
|
ffn |
|
41 |
15 40
|
syl |
|
42 |
|
fniniseg |
|
43 |
41 42
|
syl |
|
44 |
36 39 43
|
3bitr4d |
|
45 |
44
|
eqrdv |
|
46 |
15 45
|
jca |
|
47 |
|
simprr |
|
48 |
|
cnvimass |
|
49 |
|
fdm |
|
50 |
49
|
ad2antrl |
|
51 |
48 50
|
sseqtrid |
|
52 |
47 51
|
eqsstrd |
|
53 |
40
|
ad2antrl |
|
54 |
|
dffn5 |
|
55 |
53 54
|
sylib |
|
56 |
|
simplrr |
|
57 |
56
|
eleq2d |
|
58 |
|
fniniseg |
|
59 |
53 58
|
syl |
|
60 |
59
|
baibd |
|
61 |
57 60
|
bitrd |
|
62 |
61
|
biimpa |
|
63 |
|
iftrue |
|
64 |
63
|
adantl |
|
65 |
62 64
|
eqtr4d |
|
66 |
|
simprl |
|
67 |
66
|
ffvelrnda |
|
68 |
|
fvex |
|
69 |
68
|
elpr |
|
70 |
67 69
|
sylib |
|
71 |
70
|
ord |
|
72 |
71 61
|
sylibrd |
|
73 |
72
|
con1d |
|
74 |
73
|
imp |
|
75 |
|
iffalse |
|
76 |
75
|
adantl |
|
77 |
74 76
|
eqtr4d |
|
78 |
65 77
|
pm2.61dan |
|
79 |
78
|
mpteq2dva |
|
80 |
55 79
|
eqtrd |
|
81 |
52 80
|
jca |
|
82 |
46 81
|
impbida |
|
83 |
|
elpw2g |
|
84 |
1 83
|
syl |
|
85 |
|
eleq1w |
|
86 |
85
|
ifbid |
|
87 |
86
|
cbvmptv |
|
88 |
87
|
a1i |
|
89 |
88
|
eqeq2d |
|
90 |
84 89
|
anbi12d |
|
91 |
|
prex |
|
92 |
|
elmapg |
|
93 |
91 1 92
|
sylancr |
|
94 |
93
|
anbi1d |
|
95 |
82 90 94
|
3bitr4d |
|