Metamath Proof Explorer


Theorem pwcfsdom

Description: A corollary of Konig's Theorem konigth . Theorem 11.28 of TakeutiZaring p. 108. (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Hypothesis pwcfsdom.1 H = y cf A har f y
Assertion pwcfsdom A A cf A

Proof

Step Hyp Ref Expression
1 pwcfsdom.1 H = y cf A har f y
2 onzsl A On A = x On A = suc x A V Lim A
3 2 biimpi A On A = x On A = suc x A V Lim A
4 cfom cf ω = ω
5 aleph0 = ω
6 5 fveq2i cf = cf ω
7 4 6 5 3eqtr4i cf =
8 2fveq3 A = cf A = cf
9 fveq2 A = A =
10 7 8 9 3eqtr4a A = cf A = A
11 fvex A V
12 11 canth2 A 𝒫 A
13 11 pw2en 𝒫 A 2 𝑜 A
14 sdomentr A 𝒫 A 𝒫 A 2 𝑜 A A 2 𝑜 A
15 12 13 14 mp2an A 2 𝑜 A
16 alephon A On
17 alephgeom A On ω A
18 omelon ω On
19 2onn 2 𝑜 ω
20 onelss ω On 2 𝑜 ω 2 𝑜 ω
21 18 19 20 mp2 2 𝑜 ω
22 sstr 2 𝑜 ω ω A 2 𝑜 A
23 21 22 mpan ω A 2 𝑜 A
24 17 23 sylbi A On 2 𝑜 A
25 ssdomg A On 2 𝑜 A 2 𝑜 A
26 16 24 25 mpsyl A On 2 𝑜 A
27 mapdom1 2 𝑜 A 2 𝑜 A A A
28 26 27 syl A On 2 𝑜 A A A
29 sdomdomtr A 2 𝑜 A 2 𝑜 A A A A A A
30 15 28 29 sylancr A On A A A
31 oveq2 cf A = A A cf A = A A
32 31 breq2d cf A = A A A cf A A A A
33 30 32 syl5ibrcom A On cf A = A A A cf A
34 10 33 syl5 A On A = A A cf A
35 alephreg cf suc x = suc x
36 2fveq3 A = suc x cf A = cf suc x
37 fveq2 A = suc x A = suc x
38 35 36 37 3eqtr4a A = suc x cf A = A
39 38 rexlimivw x On A = suc x cf A = A
40 39 33 syl5 A On x On A = suc x A A cf A
41 limelon A V Lim A A On
42 ffn f : cf A A f Fn cf A
43 fnrnfv f Fn cf A ran f = y | x cf A y = f x
44 43 unieqd f Fn cf A ran f = y | x cf A y = f x
45 42 44 syl f : cf A A ran f = y | x cf A y = f x
46 fvex f x V
47 46 dfiun2 x cf A f x = y | x cf A y = f x
48 45 47 eqtr4di f : cf A A ran f = x cf A f x
49 48 ad2antrl A On f : cf A A z A w cf A z f w ran f = x cf A f x
50 fnfvelrn f Fn cf A w cf A f w ran f
51 42 50 sylan f : cf A A w cf A f w ran f
52 sseq2 y = f w z y z f w
53 52 rspcev f w ran f z f w y ran f z y
54 51 53 sylan f : cf A A w cf A z f w y ran f z y
55 54 rexlimdva2 f : cf A A w cf A z f w y ran f z y
56 55 ralimdv f : cf A A z A w cf A z f w z A y ran f z y
57 56 imp f : cf A A z A w cf A z f w z A y ran f z y
58 57 adantl A On f : cf A A z A w cf A z f w z A y ran f z y
59 alephislim A On Lim A
60 59 biimpi A On Lim A
61 frn f : cf A A ran f A
62 61 adantr f : cf A A z A w cf A z f w ran f A
63 coflim Lim A ran f A ran f = A z A y ran f z y
64 60 62 63 syl2an A On f : cf A A z A w cf A z f w ran f = A z A y ran f z y
65 58 64 mpbird A On f : cf A A z A w cf A z f w ran f = A
66 49 65 eqtr3d A On f : cf A A z A w cf A z f w x cf A f x = A
67 ffvelcdm f : cf A A x cf A f x A
68 16 oneli f x A f x On
69 harcard card har f x = har f x
70 iscard card har f x = har f x har f x On y har f x y har f x
71 70 simprbi card har f x = har f x y har f x y har f x
72 69 71 ax-mp y har f x y har f x
73 domrefg f x V f x f x
74 46 73 ax-mp f x f x
75 elharval f x har f x f x On f x f x
76 75 biimpri f x On f x f x f x har f x
77 74 76 mpan2 f x On f x har f x
78 breq1 y = f x y har f x f x har f x
79 78 rspccv y har f x y har f x f x har f x f x har f x
80 72 77 79 mpsyl f x On f x har f x
81 67 68 80 3syl f : cf A A x cf A f x har f x
82 harcl har f x On
83 2fveq3 y = x har f y = har f x
84 83 1 fvmptg x cf A har f x On H x = har f x
85 82 84 mpan2 x cf A H x = har f x
86 85 breq2d x cf A f x H x f x har f x
87 86 adantl f : cf A A x cf A f x H x f x har f x
88 81 87 mpbird f : cf A A x cf A f x H x
89 88 ralrimiva f : cf A A x cf A f x H x
90 fvex cf A V
91 eqid x cf A f x = x cf A f x
92 eqid x cf A H x = x cf A H x
93 90 91 92 konigth x cf A f x H x x cf A f x x cf A H x
94 89 93 syl f : cf A A x cf A f x x cf A H x
95 94 ad2antrl A On f : cf A A z A w cf A z f w x cf A f x x cf A H x
96 66 95 eqbrtrrd A On f : cf A A z A w cf A z f w A x cf A H x
97 41 96 sylan A V Lim A f : cf A A z A w cf A z f w A x cf A H x
98 ovex A cf A V
99 67 ex f : cf A A x cf A f x A
100 alephlim A V Lim A A = y A y
101 100 eleq2d A V Lim A f x A f x y A y
102 eliun f x y A y y A f x y
103 alephcard card y = y
104 103 eleq2i f x card y f x y
105 cardsdomelir f x card y f x y
106 104 105 sylbir f x y f x y
107 elharval y har f x y On y f x
108 107 simprbi y har f x y f x
109 domnsym y f x ¬ f x y
110 108 109 syl y har f x ¬ f x y
111 110 con2i f x y ¬ y har f x
112 alephon y On
113 ontri1 har f x On y On har f x y ¬ y har f x
114 82 112 113 mp2an har f x y ¬ y har f x
115 111 114 sylibr f x y har f x y
116 106 115 syl f x y har f x y
117 alephord2i A On y A y A
118 117 imp A On y A y A
119 ontr2 har f x On A On har f x y y A har f x A
120 82 16 119 mp2an har f x y y A har f x A
121 116 118 120 syl2anr A On y A f x y har f x A
122 121 rexlimdva2 A On y A f x y har f x A
123 102 122 biimtrid A On f x y A y har f x A
124 41 123 syl A V Lim A f x y A y har f x A
125 101 124 sylbid A V Lim A f x A har f x A
126 99 125 sylan9r A V Lim A f : cf A A x cf A har f x A
127 126 imp A V Lim A f : cf A A x cf A har f x A
128 83 cbvmptv y cf A har f y = x cf A har f x
129 1 128 eqtri H = x cf A har f x
130 127 129 fmptd A V Lim A f : cf A A H : cf A A
131 ffvelcdm H : cf A A x cf A H x A
132 onelss A On H x A H x A
133 16 131 132 mpsyl H : cf A A x cf A H x A
134 133 ralrimiva H : cf A A x cf A H x A
135 ss2ixp x cf A H x A x cf A H x x cf A A
136 90 11 ixpconst x cf A A = A cf A
137 135 136 sseqtrdi x cf A H x A x cf A H x A cf A
138 130 134 137 3syl A V Lim A f : cf A A x cf A H x A cf A
139 ssdomg A cf A V x cf A H x A cf A x cf A H x A cf A
140 98 138 139 mpsyl A V Lim A f : cf A A x cf A H x A cf A
141 140 adantrr A V Lim A f : cf A A z A w cf A z f w x cf A H x A cf A
142 sdomdomtr A x cf A H x x cf A H x A cf A A A cf A
143 97 141 142 syl2anc A V Lim A f : cf A A z A w cf A z f w A A cf A
144 143 expcom f : cf A A z A w cf A z f w A V Lim A A A cf A
145 144 3adant2 f : cf A A Smo f z A w cf A z f w A V Lim A A A cf A
146 cfsmo A On f f : cf A A Smo f z A w cf A z f w
147 16 146 ax-mp f f : cf A A Smo f z A w cf A z f w
148 145 147 exlimiiv A V Lim A A A cf A
149 148 a1i A On A V Lim A A A cf A
150 34 40 149 3jaod A On A = x On A = suc x A V Lim A A A cf A
151 3 150 mpd A On A A cf A
152 alephfnon Fn On
153 152 fndmi dom = On
154 153 eleq2i A dom A On
155 ndmfv ¬ A dom A =
156 1n0 1 𝑜
157 1oex 1 𝑜 V
158 157 0sdom 1 𝑜 1 𝑜
159 156 158 mpbir 1 𝑜
160 id A = A =
161 fveq2 A = cf A = cf
162 cf0 cf =
163 161 162 eqtrdi A = cf A =
164 160 163 oveq12d A = A cf A =
165 0ex V
166 map0e V = 1 𝑜
167 165 166 ax-mp = 1 𝑜
168 164 167 eqtrdi A = A cf A = 1 𝑜
169 160 168 breq12d A = A A cf A 1 𝑜
170 159 169 mpbiri A = A A cf A
171 155 170 syl ¬ A dom A A cf A
172 154 171 sylnbir ¬ A On A A cf A
173 151 172 pm2.61i A A cf A