| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|
| 2 |
|
simp2 |
|
| 3 |
|
simp3 |
|
| 4 |
|
fzofi |
|
| 5 |
4
|
a1i |
|
| 6 |
2
|
adantr |
|
| 7 |
|
elfzonn0 |
|
| 8 |
7
|
adantl |
|
| 9 |
6 8
|
expcld |
|
| 10 |
3
|
adantr |
|
| 11 |
|
ubmelm1fzo |
|
| 12 |
|
elfzonn0 |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
adantl |
|
| 15 |
10 14
|
expcld |
|
| 16 |
9 15
|
mulcld |
|
| 17 |
5 16
|
fsumcl |
|
| 18 |
2 3 17
|
subdird |
|
| 19 |
5 2 16
|
fsummulc2 |
|
| 20 |
6 9 15
|
mulassd |
|
| 21 |
6 9
|
mulcomd |
|
| 22 |
|
expp1 |
|
| 23 |
2 7 22
|
syl2an |
|
| 24 |
21 23
|
eqtr4d |
|
| 25 |
24
|
oveq1d |
|
| 26 |
20 25
|
eqtr3d |
|
| 27 |
26
|
sumeq2dv |
|
| 28 |
19 27
|
eqtrd |
|
| 29 |
5 3 16
|
fsummulc2 |
|
| 30 |
10 16
|
mulcomd |
|
| 31 |
9 15 10
|
mulassd |
|
| 32 |
|
expp1 |
|
| 33 |
32
|
eqcomd |
|
| 34 |
3 13 33
|
syl2an |
|
| 35 |
|
nncn |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
36
|
adantr |
|
| 38 |
|
elfzoelz |
|
| 39 |
38
|
zcnd |
|
| 40 |
39
|
adantl |
|
| 41 |
37 40
|
subcld |
|
| 42 |
|
npcan1 |
|
| 43 |
42
|
oveq2d |
|
| 44 |
41 43
|
syl |
|
| 45 |
34 44
|
eqtrd |
|
| 46 |
45
|
oveq2d |
|
| 47 |
30 31 46
|
3eqtrd |
|
| 48 |
47
|
sumeq2dv |
|
| 49 |
29 48
|
eqtrd |
|
| 50 |
28 49
|
oveq12d |
|
| 51 |
|
nnz |
|
| 52 |
51
|
3ad2ant1 |
|
| 53 |
|
fzoval |
|
| 54 |
52 53
|
syl |
|
| 55 |
54
|
sumeq1d |
|
| 56 |
|
nnm1nn0 |
|
| 57 |
|
nn0uz |
|
| 58 |
56 57
|
eleqtrdi |
|
| 59 |
58
|
3ad2ant1 |
|
| 60 |
2
|
adantr |
|
| 61 |
|
elfznn0 |
|
| 62 |
|
peano2nn0 |
|
| 63 |
61 62
|
syl |
|
| 64 |
63
|
adantl |
|
| 65 |
60 64
|
expcld |
|
| 66 |
3
|
adantr |
|
| 67 |
36
|
adantr |
|
| 68 |
61
|
nn0cnd |
|
| 69 |
68
|
adantl |
|
| 70 |
|
1cnd |
|
| 71 |
67 69 70
|
sub32d |
|
| 72 |
|
fznn0sub |
|
| 73 |
72
|
adantl |
|
| 74 |
71 73
|
eqeltrd |
|
| 75 |
66 74
|
expcld |
|
| 76 |
65 75
|
mulcld |
|
| 77 |
|
oveq1 |
|
| 78 |
77
|
oveq2d |
|
| 79 |
|
oveq2 |
|
| 80 |
79
|
oveq1d |
|
| 81 |
80
|
oveq2d |
|
| 82 |
78 81
|
oveq12d |
|
| 83 |
59 76 82
|
fsumm1 |
|
| 84 |
55 83
|
eqtrd |
|
| 85 |
54
|
sumeq1d |
|
| 86 |
61
|
adantl |
|
| 87 |
60 86
|
expcld |
|
| 88 |
54
|
eleq2d |
|
| 89 |
|
fzonnsub |
|
| 90 |
89
|
nnnn0d |
|
| 91 |
88 90
|
biimtrrdi |
|
| 92 |
91
|
imp |
|
| 93 |
66 92
|
expcld |
|
| 94 |
87 93
|
mulcld |
|
| 95 |
|
oveq2 |
|
| 96 |
|
oveq2 |
|
| 97 |
96
|
oveq2d |
|
| 98 |
95 97
|
oveq12d |
|
| 99 |
59 94 98
|
fsum1p |
|
| 100 |
2
|
exp0d |
|
| 101 |
36
|
subid1d |
|
| 102 |
101
|
oveq2d |
|
| 103 |
100 102
|
oveq12d |
|
| 104 |
|
simp1 |
|
| 105 |
104
|
nnnn0d |
|
| 106 |
3 105
|
expcld |
|
| 107 |
106
|
mullidd |
|
| 108 |
103 107
|
eqtrd |
|
| 109 |
|
0p1e1 |
|
| 110 |
109
|
a1i |
|
| 111 |
110
|
oveq1d |
|
| 112 |
111
|
sumeq1d |
|
| 113 |
108 112
|
oveq12d |
|
| 114 |
85 99 113
|
3eqtrd |
|
| 115 |
84 114
|
oveq12d |
|
| 116 |
|
fzfid |
|
| 117 |
2
|
adantr |
|
| 118 |
|
elfznn |
|
| 119 |
118
|
nnnn0d |
|
| 120 |
119
|
adantl |
|
| 121 |
117 120
|
expcld |
|
| 122 |
3
|
adantr |
|
| 123 |
|
fzoval |
|
| 124 |
52 123
|
syl |
|
| 125 |
124
|
eleq2d |
|
| 126 |
|
fzonnsub |
|
| 127 |
126
|
nnnn0d |
|
| 128 |
125 127
|
biimtrrdi |
|
| 129 |
128
|
imp |
|
| 130 |
122 129
|
expcld |
|
| 131 |
121 130
|
mulcld |
|
| 132 |
116 131
|
fsumcl |
|
| 133 |
2 105
|
expcld |
|
| 134 |
|
oveq1 |
|
| 135 |
134
|
oveq2d |
|
| 136 |
|
oveq2 |
|
| 137 |
136
|
oveq1d |
|
| 138 |
137
|
oveq2d |
|
| 139 |
135 138
|
oveq12d |
|
| 140 |
139
|
cbvsumv |
|
| 141 |
|
1m1e0 |
|
| 142 |
141
|
eqcomi |
|
| 143 |
142
|
oveq1i |
|
| 144 |
143
|
a1i |
|
| 145 |
36
|
adantr |
|
| 146 |
|
elfznn0 |
|
| 147 |
146
|
nn0cnd |
|
| 148 |
147
|
adantl |
|
| 149 |
|
1cnd |
|
| 150 |
145 148 149
|
subsub4d |
|
| 151 |
150
|
oveq2d |
|
| 152 |
151
|
oveq2d |
|
| 153 |
144 152
|
sumeq12dv |
|
| 154 |
140 153
|
eqtrid |
|
| 155 |
|
1zzd |
|
| 156 |
|
peano2zm |
|
| 157 |
52 156
|
syl |
|
| 158 |
|
oveq2 |
|
| 159 |
|
oveq2 |
|
| 160 |
159
|
oveq2d |
|
| 161 |
158 160
|
oveq12d |
|
| 162 |
155 155 157 131 161
|
fsumshftm |
|
| 163 |
154 162
|
eqtr4d |
|
| 164 |
|
npcan1 |
|
| 165 |
36 164
|
syl |
|
| 166 |
165
|
oveq2d |
|
| 167 |
|
peano2cnm |
|
| 168 |
35 167
|
syl |
|
| 169 |
|
1cnd |
|
| 170 |
35 168 169
|
sub32d |
|
| 171 |
168
|
subidd |
|
| 172 |
170 171
|
eqtrd |
|
| 173 |
172
|
3ad2ant1 |
|
| 174 |
173
|
oveq2d |
|
| 175 |
|
exp0 |
|
| 176 |
175
|
3ad2ant3 |
|
| 177 |
174 176
|
eqtrd |
|
| 178 |
166 177
|
oveq12d |
|
| 179 |
133
|
mulridd |
|
| 180 |
178 179
|
eqtrd |
|
| 181 |
163 180
|
oveq12d |
|
| 182 |
132 133 181
|
comraddd |
|
| 183 |
182
|
oveq1d |
|
| 184 |
133 106 132
|
pnpcan2d |
|
| 185 |
115 183 184
|
3eqtrd |
|
| 186 |
18 50 185
|
3eqtrrd |
|
| 187 |
186
|
3exp |
|
| 188 |
|
simp2 |
|
| 189 |
|
simp3 |
|
| 190 |
188 189
|
subcld |
|
| 191 |
190
|
mul01d |
|
| 192 |
|
oveq2 |
|
| 193 |
|
fzo0 |
|
| 194 |
192 193
|
eqtrdi |
|
| 195 |
194
|
sumeq1d |
|
| 196 |
195
|
3ad2ant1 |
|
| 197 |
|
sum0 |
|
| 198 |
196 197
|
eqtrdi |
|
| 199 |
198
|
oveq2d |
|
| 200 |
|
oveq2 |
|
| 201 |
200
|
3ad2ant1 |
|
| 202 |
|
exp0 |
|
| 203 |
202
|
3ad2ant2 |
|
| 204 |
201 203
|
eqtrd |
|
| 205 |
|
oveq2 |
|
| 206 |
205
|
3ad2ant1 |
|
| 207 |
175
|
3ad2ant3 |
|
| 208 |
206 207
|
eqtrd |
|
| 209 |
204 208
|
oveq12d |
|
| 210 |
209 141
|
eqtrdi |
|
| 211 |
191 199 210
|
3eqtr4rd |
|
| 212 |
211
|
3exp |
|
| 213 |
187 212
|
jaoi |
|
| 214 |
1 213
|
sylbi |
|
| 215 |
214
|
3imp |
|