Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|
2 |
|
simp2 |
|
3 |
|
simp3 |
|
4 |
|
fzofi |
|
5 |
4
|
a1i |
|
6 |
2
|
adantr |
|
7 |
|
elfzonn0 |
|
8 |
7
|
adantl |
|
9 |
6 8
|
expcld |
|
10 |
3
|
adantr |
|
11 |
|
ubmelm1fzo |
|
12 |
|
elfzonn0 |
|
13 |
11 12
|
syl |
|
14 |
13
|
adantl |
|
15 |
10 14
|
expcld |
|
16 |
9 15
|
mulcld |
|
17 |
5 16
|
fsumcl |
|
18 |
2 3 17
|
subdird |
|
19 |
5 2 16
|
fsummulc2 |
|
20 |
6 9 15
|
mulassd |
|
21 |
6 9
|
mulcomd |
|
22 |
|
expp1 |
|
23 |
2 7 22
|
syl2an |
|
24 |
21 23
|
eqtr4d |
|
25 |
24
|
oveq1d |
|
26 |
20 25
|
eqtr3d |
|
27 |
26
|
sumeq2dv |
|
28 |
19 27
|
eqtrd |
|
29 |
5 3 16
|
fsummulc2 |
|
30 |
10 16
|
mulcomd |
|
31 |
9 15 10
|
mulassd |
|
32 |
|
expp1 |
|
33 |
32
|
eqcomd |
|
34 |
3 13 33
|
syl2an |
|
35 |
|
nncn |
|
36 |
35
|
3ad2ant1 |
|
37 |
36
|
adantr |
|
38 |
|
elfzoelz |
|
39 |
38
|
zcnd |
|
40 |
39
|
adantl |
|
41 |
37 40
|
subcld |
|
42 |
|
npcan1 |
|
43 |
42
|
oveq2d |
|
44 |
41 43
|
syl |
|
45 |
34 44
|
eqtrd |
|
46 |
45
|
oveq2d |
|
47 |
30 31 46
|
3eqtrd |
|
48 |
47
|
sumeq2dv |
|
49 |
29 48
|
eqtrd |
|
50 |
28 49
|
oveq12d |
|
51 |
|
nnz |
|
52 |
51
|
3ad2ant1 |
|
53 |
|
fzoval |
|
54 |
52 53
|
syl |
|
55 |
54
|
sumeq1d |
|
56 |
|
nnm1nn0 |
|
57 |
|
nn0uz |
|
58 |
56 57
|
eleqtrdi |
|
59 |
58
|
3ad2ant1 |
|
60 |
2
|
adantr |
|
61 |
|
elfznn0 |
|
62 |
|
peano2nn0 |
|
63 |
61 62
|
syl |
|
64 |
63
|
adantl |
|
65 |
60 64
|
expcld |
|
66 |
3
|
adantr |
|
67 |
36
|
adantr |
|
68 |
61
|
nn0cnd |
|
69 |
68
|
adantl |
|
70 |
|
1cnd |
|
71 |
67 69 70
|
sub32d |
|
72 |
|
fznn0sub |
|
73 |
72
|
adantl |
|
74 |
71 73
|
eqeltrd |
|
75 |
66 74
|
expcld |
|
76 |
65 75
|
mulcld |
|
77 |
|
oveq1 |
|
78 |
77
|
oveq2d |
|
79 |
|
oveq2 |
|
80 |
79
|
oveq1d |
|
81 |
80
|
oveq2d |
|
82 |
78 81
|
oveq12d |
|
83 |
59 76 82
|
fsumm1 |
|
84 |
55 83
|
eqtrd |
|
85 |
54
|
sumeq1d |
|
86 |
61
|
adantl |
|
87 |
60 86
|
expcld |
|
88 |
54
|
eleq2d |
|
89 |
|
fzonnsub |
|
90 |
89
|
nnnn0d |
|
91 |
88 90
|
syl6bir |
|
92 |
91
|
imp |
|
93 |
66 92
|
expcld |
|
94 |
87 93
|
mulcld |
|
95 |
|
oveq2 |
|
96 |
|
oveq2 |
|
97 |
96
|
oveq2d |
|
98 |
95 97
|
oveq12d |
|
99 |
59 94 98
|
fsum1p |
|
100 |
2
|
exp0d |
|
101 |
36
|
subid1d |
|
102 |
101
|
oveq2d |
|
103 |
100 102
|
oveq12d |
|
104 |
|
simp1 |
|
105 |
104
|
nnnn0d |
|
106 |
3 105
|
expcld |
|
107 |
106
|
mulid2d |
|
108 |
103 107
|
eqtrd |
|
109 |
|
0p1e1 |
|
110 |
109
|
a1i |
|
111 |
110
|
oveq1d |
|
112 |
111
|
sumeq1d |
|
113 |
108 112
|
oveq12d |
|
114 |
85 99 113
|
3eqtrd |
|
115 |
84 114
|
oveq12d |
|
116 |
|
fzfid |
|
117 |
2
|
adantr |
|
118 |
|
elfznn |
|
119 |
118
|
nnnn0d |
|
120 |
119
|
adantl |
|
121 |
117 120
|
expcld |
|
122 |
3
|
adantr |
|
123 |
|
fzoval |
|
124 |
52 123
|
syl |
|
125 |
124
|
eleq2d |
|
126 |
|
fzonnsub |
|
127 |
126
|
nnnn0d |
|
128 |
125 127
|
syl6bir |
|
129 |
128
|
imp |
|
130 |
122 129
|
expcld |
|
131 |
121 130
|
mulcld |
|
132 |
116 131
|
fsumcl |
|
133 |
2 105
|
expcld |
|
134 |
|
oveq1 |
|
135 |
134
|
oveq2d |
|
136 |
|
oveq2 |
|
137 |
136
|
oveq1d |
|
138 |
137
|
oveq2d |
|
139 |
135 138
|
oveq12d |
|
140 |
139
|
cbvsumv |
|
141 |
|
1m1e0 |
|
142 |
141
|
eqcomi |
|
143 |
142
|
oveq1i |
|
144 |
143
|
a1i |
|
145 |
36
|
adantr |
|
146 |
|
elfznn0 |
|
147 |
146
|
nn0cnd |
|
148 |
147
|
adantl |
|
149 |
|
1cnd |
|
150 |
145 148 149
|
subsub4d |
|
151 |
150
|
oveq2d |
|
152 |
151
|
oveq2d |
|
153 |
144 152
|
sumeq12dv |
|
154 |
140 153
|
eqtrid |
|
155 |
|
1zzd |
|
156 |
|
peano2zm |
|
157 |
52 156
|
syl |
|
158 |
|
oveq2 |
|
159 |
|
oveq2 |
|
160 |
159
|
oveq2d |
|
161 |
158 160
|
oveq12d |
|
162 |
155 155 157 131 161
|
fsumshftm |
|
163 |
154 162
|
eqtr4d |
|
164 |
|
npcan1 |
|
165 |
36 164
|
syl |
|
166 |
165
|
oveq2d |
|
167 |
|
peano2cnm |
|
168 |
35 167
|
syl |
|
169 |
|
1cnd |
|
170 |
35 168 169
|
sub32d |
|
171 |
168
|
subidd |
|
172 |
170 171
|
eqtrd |
|
173 |
172
|
3ad2ant1 |
|
174 |
173
|
oveq2d |
|
175 |
|
exp0 |
|
176 |
175
|
3ad2ant3 |
|
177 |
174 176
|
eqtrd |
|
178 |
166 177
|
oveq12d |
|
179 |
133
|
mulid1d |
|
180 |
178 179
|
eqtrd |
|
181 |
163 180
|
oveq12d |
|
182 |
132 133 181
|
comraddd |
|
183 |
182
|
oveq1d |
|
184 |
133 106 132
|
pnpcan2d |
|
185 |
115 183 184
|
3eqtrd |
|
186 |
18 50 185
|
3eqtrrd |
|
187 |
186
|
3exp |
|
188 |
|
simp2 |
|
189 |
|
simp3 |
|
190 |
188 189
|
subcld |
|
191 |
190
|
mul01d |
|
192 |
|
oveq2 |
|
193 |
|
fzo0 |
|
194 |
192 193
|
eqtrdi |
|
195 |
194
|
sumeq1d |
|
196 |
195
|
3ad2ant1 |
|
197 |
|
sum0 |
|
198 |
196 197
|
eqtrdi |
|
199 |
198
|
oveq2d |
|
200 |
|
oveq2 |
|
201 |
200
|
3ad2ant1 |
|
202 |
|
exp0 |
|
203 |
202
|
3ad2ant2 |
|
204 |
201 203
|
eqtrd |
|
205 |
|
oveq2 |
|
206 |
205
|
3ad2ant1 |
|
207 |
175
|
3ad2ant3 |
|
208 |
206 207
|
eqtrd |
|
209 |
204 208
|
oveq12d |
|
210 |
209 141
|
eqtrdi |
|
211 |
191 199 210
|
3eqtr4rd |
|
212 |
211
|
3exp |
|
213 |
187 212
|
jaoi |
|
214 |
1 213
|
sylbi |
|
215 |
214
|
3imp |
|