Metamath Proof Explorer


Theorem pwdju1

Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdju1 A V 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜

Proof

Step Hyp Ref Expression
1 1on 1 𝑜 On
2 pwdjuen A V 1 𝑜 On 𝒫 A ⊔︀ 1 𝑜 𝒫 A × 𝒫 1 𝑜
3 1 2 mpan2 A V 𝒫 A ⊔︀ 1 𝑜 𝒫 A × 𝒫 1 𝑜
4 pwexg A V 𝒫 A V
5 1oex 1 𝑜 V
6 5 pwex 𝒫 1 𝑜 V
7 xpcomeng 𝒫 A V 𝒫 1 𝑜 V 𝒫 A × 𝒫 1 𝑜 𝒫 1 𝑜 × 𝒫 A
8 4 6 7 sylancl A V 𝒫 A × 𝒫 1 𝑜 𝒫 1 𝑜 × 𝒫 A
9 entr 𝒫 A ⊔︀ 1 𝑜 𝒫 A × 𝒫 1 𝑜 𝒫 A × 𝒫 1 𝑜 𝒫 1 𝑜 × 𝒫 A 𝒫 A ⊔︀ 1 𝑜 𝒫 1 𝑜 × 𝒫 A
10 3 8 9 syl2anc A V 𝒫 A ⊔︀ 1 𝑜 𝒫 1 𝑜 × 𝒫 A
11 pwpw0 𝒫 =
12 df1o2 1 𝑜 =
13 12 pweqi 𝒫 1 𝑜 = 𝒫
14 df2o2 2 𝑜 =
15 11 13 14 3eqtr4i 𝒫 1 𝑜 = 2 𝑜
16 15 xpeq1i 𝒫 1 𝑜 × 𝒫 A = 2 𝑜 × 𝒫 A
17 xp2dju 2 𝑜 × 𝒫 A = 𝒫 A ⊔︀ 𝒫 A
18 16 17 eqtri 𝒫 1 𝑜 × 𝒫 A = 𝒫 A ⊔︀ 𝒫 A
19 10 18 breqtrdi A V 𝒫 A ⊔︀ 1 𝑜 𝒫 A ⊔︀ 𝒫 A
20 19 ensymd A V 𝒫 A ⊔︀ 𝒫 A 𝒫 A ⊔︀ 1 𝑜