Metamath Proof Explorer


Theorem pwdjudom

Description: A property of dominance over a powerset, and a main lemma for gchac . Similar to Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion pwdjudom 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A B

Proof

Step Hyp Ref Expression
1 canthwdom ¬ 𝒫 A * A
2 0ex V
3 reldom Rel
4 3 brrelex2i 𝒫 A ⊔︀ A A ⊔︀ B A ⊔︀ B V
5 djuexb A V B V A ⊔︀ B V
6 4 5 sylibr 𝒫 A ⊔︀ A A ⊔︀ B A V B V
7 6 simpld 𝒫 A ⊔︀ A A ⊔︀ B A V
8 xpsnen2g V A V × A A
9 2 7 8 sylancr 𝒫 A ⊔︀ A A ⊔︀ B × A A
10 endom × A A × A A
11 domwdom × A A × A * A
12 wdomtr 𝒫 A * × A × A * A 𝒫 A * A
13 12 expcom × A * A 𝒫 A * × A 𝒫 A * A
14 9 10 11 13 4syl 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A * × A 𝒫 A * A
15 1 14 mtoi 𝒫 A ⊔︀ A A ⊔︀ B ¬ 𝒫 A * × A
16 pwdjuen A V A V 𝒫 A ⊔︀ A 𝒫 A × 𝒫 A
17 7 7 16 syl2anc 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A ⊔︀ A 𝒫 A × 𝒫 A
18 domen1 𝒫 A ⊔︀ A 𝒫 A × 𝒫 A 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A × 𝒫 A A ⊔︀ B
19 17 18 syl 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A × 𝒫 A A ⊔︀ B
20 19 ibi 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A × 𝒫 A A ⊔︀ B
21 df-dju A ⊔︀ B = × A 1 𝑜 × B
22 20 21 breqtrdi 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A × 𝒫 A × A 1 𝑜 × B
23 unxpwdom 𝒫 A × 𝒫 A × A 1 𝑜 × B 𝒫 A * × A 𝒫 A 1 𝑜 × B
24 22 23 syl 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A * × A 𝒫 A 1 𝑜 × B
25 24 ord 𝒫 A ⊔︀ A A ⊔︀ B ¬ 𝒫 A * × A 𝒫 A 1 𝑜 × B
26 15 25 mpd 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A 1 𝑜 × B
27 1on 1 𝑜 On
28 6 simprd 𝒫 A ⊔︀ A A ⊔︀ B B V
29 xpsnen2g 1 𝑜 On B V 1 𝑜 × B B
30 27 28 29 sylancr 𝒫 A ⊔︀ A A ⊔︀ B 1 𝑜 × B B
31 domentr 𝒫 A 1 𝑜 × B 1 𝑜 × B B 𝒫 A B
32 26 30 31 syl2anc 𝒫 A ⊔︀ A A ⊔︀ B 𝒫 A B